A159842 Number of symmetrically-distinct supercells (sublattices) of the fcc and bcc lattices (n is the "volume factor" of the supercell).
1, 2, 3, 7, 5, 10, 7, 20, 14, 18, 11, 41, 15, 28, 31, 58, 21, 60, 25, 77, 49, 54, 33, 144, 50, 72, 75, 123, 49, 158, 55, 177, 97, 112, 99, 268, 75, 136, 129, 286, 89, 268, 97, 249, 218, 190, 113, 496, 146, 280, 203, 333, 141, 421, 207, 476, 247, 290, 171, 735
Offset: 1
Keywords
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..1000
- J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys., 2010, 10; arXiv:1002.3609 [hep-th], 2010.
- Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, J. High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th], 2010.
- Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115.
- Materials Simulation Group at Brigham Young University, Derivative structure enumeration library.
- Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda and Isao Tanaka, Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram, J. Chem. Phys. 153, 104109 (2020); preprint: Derivative structure enumeration using binary decision diagram, arXiv:2002.12603 [physics.comp-ph], 2020.
- Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
- Index entries for sequences related to sublattices
- Index entries for sequences related to f.c.c. lattice
- Index entries for sequences related to b.c.c. lattice
Crossrefs
Programs
-
Python
def dc(f, *r): # Dirichlet convolution of multiple sequences if not r: return f return lambda n: sum(f(d)*dc(*r)(n//d) for d in range(1, n+1) if n%d == 0) def fin(*a): # finite sequence return lambda n: 0 if n > len(a) else a[n-1] def per(*a): # periodic sequences return lambda n: a[n%len(a)] u, N, N2 = lambda n: 1, lambda n: n, lambda n: n**2 def a(n): # Hanany, Orlando & Reffert, sec. 6.3 return (dc(u, N, N2)(n) + 9*dc(fin(1, -1, 0, 4), u, u, N)(n) + 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n) + 6*dc(fin(1, -1, 0, 2), u, u, per(0, 1, 0, -1))(n))//24 print([a(n) for n in range(1, 300)]) # Andrey Zabolotskiy, Mar 18 2018
Extensions
Terms a(20) and beyond from Andrey Zabolotskiy, Mar 18 2018
Comments