cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173934 Irregular triangle in which row n consists of numbers m < k/2 such that m/k is in the Cantor set, where k= A173931(n) and gcd(m,k) = 1.

Original entry on oeis.org

1, 1, 3, 1, 3, 4, 1, 3, 9, 1, 3, 9, 13, 1, 3, 7, 9, 19, 21, 25, 27, 1, 3, 9, 10, 27, 30, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 5, 11, 15, 33, 45, 47, 5, 15, 41, 45, 47, 59, 7, 16, 21, 22, 48, 61, 63, 66, 1, 3, 7, 9, 19, 21, 25, 27, 55, 57, 63, 73, 75, 79, 81, 1, 3, 9, 27
Offset: 1

Views

Author

T. D. Noe, Mar 03 2010

Keywords

Comments

The length of row n is A173933(n). Observe that the m are actually less than k/3. Note that (k-m)/k is also in the Cantor set. If m appears in a row, then 3m does also. Let A and B be the first and last numbers in row n, then it appears that k = A + 3B. This implies A = k (mod 3). The interesting graph of this triangle shows that some ranges of m are not allowed.
When k is a prime of the form (3^r-1)/2, then the row consists of the 2^(r-1)-1 numbers (greater than 0) whose base-3 representation consists of only 0's and 1's. Hence, for r=3,7, and 13, the primes k are 13, 1093, and 797161, and the number of m < k/2 is 3, 63, and 4095.

Crossrefs

Programs

  • Mathematica
    Flatten[Last[Transpose[cantor]]] (* see A173931 *)

Extensions

Name qualified by Peter Munn, Jul 06 2019

A173933 The number of numbers m < k/2 such that m/k is a reduced fraction in the Cantor set, where k= A173931(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 8, 6, 15, 6, 6, 8, 15, 8, 12, 8, 8, 10, 24, 27, 16, 12, 9, 63, 10, 16, 12, 63, 20, 12, 11, 10, 36, 12, 56, 12, 12, 44, 12, 15, 36, 12, 16, 120, 60, 110, 24, 16, 18, 24, 225
Offset: 1

Views

Author

T. D. Noe, Mar 03 2010

Keywords

Comments

When k is a prime of the form (3^r-1)/2, then the m are 2^r-1 numbers (greater than 0) whose base-3 representation consists of only 0's and 1's. Hence, for r=3,7, and 13, the primes k are 13, 1093, and 797161, and the number of m < k/2 is 3, 63, and 4095.

Examples

			When k=40, then 1/k, 3/k, 9/k, and 13/k have base-3 representations containing only the digits 0 and 2.
		

Crossrefs

Programs

  • Mathematica
    Length /@ Last[Transpose[cantor]] (* see A173931 *)

Extensions

Name qualified by Peter Munn, Jul 14 2019

A173932 Least number m such that m/A173931(n) is a reduced fraction in the Cantor set.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 7, 1, 1, 1, 11, 17, 8, 1, 1, 1, 1, 1, 1, 37, 47, 19, 1, 1, 71, 25, 23, 1, 1, 1, 121, 43, 11, 5, 13, 2, 61, 59, 1, 1, 1, 197, 95, 28, 1, 1
Offset: 1

Views

Author

T. D. Noe, Mar 03 2010

Keywords

Comments

When a(n)=1, then A173931(n) is in sequence A173793.

Crossrefs

Programs

  • Mathematica
    First /@ Last[Transpose[cantor]] (* see A173931 *)

Extensions

Name qualified by Peter Munn, Jul 12 2019
Showing 1-3 of 3 results.