A173960 Averages of four consecutive odd squares.
21, 41, 69, 105, 149, 201, 261, 329, 405, 489, 581, 681, 789, 905, 1029, 1161, 1301, 1449, 1605, 1769, 1941, 2121, 2309, 2505, 2709, 2921, 3141, 3369, 3605, 3849, 4101, 4361, 4629, 4905, 5189, 5481, 5781, 6089, 6405, 6729, 7061, 7401, 7749, 8105, 8469
Offset: 1
Examples
(1^2 + 3^2 + 5^2 + 7^2)/4 = 21.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A027575.
Programs
-
Maple
A173960 := proc(n) 4*n^2+8*n+9 ; end proc: seq(A173960(n),n=1..100) ; # R. J. Mathar, Mar 31 2010
-
Mathematica
f[n_]:=(n^2+(n+2)^2+(n+4)^2+(n+6)^2)/4;Table[f[n],{n,1,6!,2}]
-
PARI
a(n)=4*n^2+8*n+9 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = ((2*n-1)^2 + (2*n+1)^2 + (2*n+3)^2 + (2*n+5)^2)/4 = 4*n^2 + 8*n + 9.
From Colin Barker, Apr 15 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(21-22*x+9*x^2)/(1-x)^3. (End)
E.g.f.: exp(x)*(4*x^2 + 12*x + 9) - 9. - Elmo R. Oliveira, Nov 01 2024
Extensions
Formula corrected by R. J. Mathar, Mar 31 2010
Comments