cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173979 a(n) is the smallest number m from A173977 for which A020639(2m-1) = prime(n).

Original entry on oeis.org

5, 13, 25, 127, 85, 196, 181, 472, 421, 946, 685, 1210, 925, 1105, 1882, 3157, 1861, 2446, 2521, 3541, 4306, 4690, 3961, 6160, 5707, 5305, 5725, 6922, 9436, 8065, 8581, 10207, 9661, 13336, 12307, 12796, 14752, 18955, 14965
Offset: 2

Views

Author

Vladimir Shevelev, Mar 04 2010

Keywords

Comments

If the requirement that m be an element of A173977 is dropped, the sequence becomes A006254. - R. J. Mathar, Nov 02 2011

Crossrefs

Programs

  • Maple
    A020639 := proc(n) if n = 1 then 1; else min(op(numtheory[factorset](n)) ) ; end if; end proc:
    isA173977 := proc(n) A020639(2*n-1) < A020639(2*n-3) ; end proc:
    A173979 := proc(n) local p,m ; p := ithprime(n) ; for m from 1 do if A020639(2*m-1) = p and isA173977(m) then return m ; end if; end do: end proc:
    seq(A173979(n),n=2..40) ; # R. J. Mathar, Sep 02 2011
  • Mathematica
    lpf[n_] := lpf[n] = FactorInteger[n][[1, 1]]; q[n_] := lpf[2*n-1] < lpf[2*n-3]; seq[len_] := Module[{s = Table[0, {Prime[len+1]}], k = 2, c = 0, p}, While[c < len, If[q[k], p = lpf[2*k-1]; If[p <= Length[s] && s[[p]] == 0, c++; s[[p]] = k]]; k++]; Select[s, # > 0 &]]; seq[100] (* Amiram Eldar, Oct 25 2024 *)

Extensions

Name corrected by Vladimir Shevelev, Mar 15 2010