A174453 a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.
1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
Offset: 5
Keywords
Links
- Paul Tek, Table of n, a(n) for n = 5..10000
- V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
Crossrefs
Programs
-
Maple
A174453 := proc(n) local k,m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m,m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n),n=5..120); # R. J. Mathar, Nov 04 2010
-
Mathematica
a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ]; Table[a[n], {n, 5, 106}] (* Jean-François Alcover, Nov 29 2017 *)
Extensions
Terms beyond a(34) from R. J. Mathar, Nov 04 2010
Comments