cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173993 Sequence whose Hankel transform is the Somos (4) sequence.

Original entry on oeis.org

1, 2, 6, 17, 50, 146, 430, 1267, 3746, 11091, 32900, 97716, 290586, 864980, 2577032, 7683397, 22922874, 68427057, 204362172, 610604629, 1825092080, 5457016431, 16321318264, 48828168580, 146112907266, 437319580738, 1309158060068
Offset: 0

Views

Author

Paul Barry, Mar 04 2010

Keywords

Comments

Hankel transform is A006720(n+3).

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((Sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3))-2*x^2+4*x-1)/(2*x*(1-4*x+3*x^2)))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    CoefficientList[Series[(Sqrt[(1-2*x)*(1-2*x-4*x^2+4*x^3)]-2*x^2+4*x-1)/( 2 x*(1 - 4 x + 3 x^2)), {x, 0, 50}], x] (* G. C. Greubel, Sep 22 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3))-2*x^2+4*x-1)/(2*x*(1-4*x+3*x^2))) \\ G. C. Greubel, Sep 22 2018
    

Formula

G.f.: (sqrt((1-2x)*(1-2x-4x^2+4x^3))-2x^2+4x-1)/(2x*(1-4x+3x^2)).
Conjecture: (n+1)*a(n) +2*(-4*n-1)*a(n-1) +(19*n-5)*a(n-2) -36*a(n-3) +8*(-7*n+26)*a(n-4) +2*(34*n-143)*a(n-5) +24*(-n+5)*a(n-6)=0. - R. J. Mathar, Oct 10 2014