A173993 Sequence whose Hankel transform is the Somos (4) sequence.
1, 2, 6, 17, 50, 146, 430, 1267, 3746, 11091, 32900, 97716, 290586, 864980, 2577032, 7683397, 22922874, 68427057, 204362172, 610604629, 1825092080, 5457016431, 16321318264, 48828168580, 146112907266, 437319580738, 1309158060068
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!((Sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3))-2*x^2+4*x-1)/(2*x*(1-4*x+3*x^2)))); // G. C. Greubel, Sep 22 2018 -
Mathematica
CoefficientList[Series[(Sqrt[(1-2*x)*(1-2*x-4*x^2+4*x^3)]-2*x^2+4*x-1)/( 2 x*(1 - 4 x + 3 x^2)), {x, 0, 50}], x] (* G. C. Greubel, Sep 22 2018 *)
-
PARI
my(x='x+O('x^50)); Vec((sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3))-2*x^2+4*x-1)/(2*x*(1-4*x+3*x^2))) \\ G. C. Greubel, Sep 22 2018
Formula
G.f.: (sqrt((1-2x)*(1-2x-4x^2+4x^3))-2x^2+4x-1)/(2x*(1-4x+3x^2)).
Conjecture: (n+1)*a(n) +2*(-4*n-1)*a(n-1) +(19*n-5)*a(n-2) -36*a(n-3) +8*(-7*n+26)*a(n-4) +2*(34*n-143)*a(n-5) +24*(-n+5)*a(n-6)=0. - R. J. Mathar, Oct 10 2014
Comments