cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174018 Number of reduced 3 X 3 magilatin squares with largest entry n.

Original entry on oeis.org

12, 24, 36, 192, 420, 720, 1020, 1752, 2268, 3648, 4596, 6624, 8148, 11112, 12924, 17328, 20076, 25488, 28452, 36312, 39924, 49152, 54060, 64944, 70716, 84696, 90612, 106896, 114756, 133200, 141708, 164184, 173340, 198192, 209796, 237600
Offset: 2

Views

Author

Thomas Zaslavsky, Mar 05 2010

Keywords

Comments

A magilatin square has equal row and column sums and no number repeated in any row or column. It is reduced if the least value in it is 0.
a(n) is given by a quasipolynomial of degree 5 and period 60.

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173548 (all magilatin squares), A173730 (symmetry types), A174019 (reduced symmetry types by largest value), A174020 (reduced squares by magic sum), A174021 (reduced symmetry types by magic sum).

Formula

G.f.: 12x^2/(x-1)^2 - 36x^3/(x-1)^3 - 72x^3/[(x-1)*(x^2-1)] - 36x^3/(x^3-1) - 72x^4/[(x-1)^2*(x^2-1)] - 36x^4/[(x-1)*(x^3-1)] - 72x^4/(x^2-1)^2 + 72x^5/[(x-1)^3*(x^2-1)] + 72x^5/[(x-1)^2*(x^3-1)] + 144x^5/[(x-1)*(x^2-1)^2] + 72x^5/[(x-1)*(x^4-1)] + 108x^5/[(x^2-1)*(x^3-1)] + 72x^5/(x^5-1) + 144x^6/[(x-1)*(x^2-1)*(x^3-1)] + 72x^6/(x^2-1)^3 + 144x^6/[(x^2-1)*(x^4-1)] + 72x^6/(x^3-1)^2 + 72x^7/[(x^2-1)^2*(x^3-1)] + 72x^7/[(x^2-1)*(x^5-1)] + 72x^7/[(x^3-1)*(x^4-1)] + 72x^8/[(x^3-1)*(x^5-1)].

Extensions

"Distinct" values (incorrect) deleted by Thomas Zaslavsky, Apr 24 2010

A174019 Number of symmetry classes of reduced 3 X 3 magilatin squares with largest entry n.

Original entry on oeis.org

1, 2, 3, 8, 15, 24, 32, 52, 63, 94, 114, 156, 184, 244, 276, 358, 406, 504, 555, 692, 752, 910, 991, 1174, 1267, 1498, 1593, 1858, 1983, 2280, 2414, 2772, 2915, 3308, 3488, 3924, 4114, 4622, 4816, 5374, 5616, 6216, 6467, 7154, 7418, 8158, 8469, 9264, 9587
Offset: 2

Views

Author

Thomas Zaslavsky, Mar 05 2010

Keywords

Comments

A magilatin square has equal row and column sums and no number repeated in any row or column. It is reduced if the least value in it is 0. The symmetries are row and column permutations and diagonal flip.
a(n) is given by a quasipolynomial of degree 5 and period 60.

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173548 (all magilatin squares), A173730 (symmetry types), A174018 (reduced squares by largest value), A174021 (reduced symmetry types by magic sum).

Formula

G.f.: x^2/(x-1)^2 - x^3/(x-1)^3 - 2x^3/[(x-1)*(x^2-1)] - x^3/(x^3-1) - 2x^4/[(x-1)^2*(x^2-1)] - x^4/[(x-1)*(x^3-1)] - 2x^4/(x^2-1)^2 + x^5/[(x-1)^3*(x^2-1)] + x^5/[(x-1)^2*(x^3-1)] + 2x^5/[(x-1)*(x^2-1)^2] + x^5/[(x-1)*(x^4-1)] + x^5/[(x^2-1)*(x^3-1)] + x^5/(x^5-1) + 2x^6/[(x-1)*(x^2-1)*(x^3-1)] + 2x^6/[(x^2-1)*(x^4-1)] + x^6/(x^2-1)^3 + x^6/(x^3-1)^2 + x^7/[(x^3-1)*(x^4-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^8/[(x^3-1)*(x^5-1)]

Extensions

"Distinct" values (incorrect) deleted by Thomas Zaslavsky, Apr 24 2010

A174020 Number of reduced 3 X 3 magilatin squares with magic sum n.

Original entry on oeis.org

12, 12, 24, 60, 144, 216, 480, 444, 780, 996, 1404, 1548, 2460, 2640, 3696, 4128, 5508, 5904, 8148, 8220, 10824, 11688, 14364, 14904, 19380, 19596, 24108, 24936, 30240, 31104, 37992, 37920, 45312, 47148, 54756, 55404, 66000, 66252, 76920, 78288
Offset: 3

Views

Author

Thomas Zaslavsky, Mar 05 2010

Keywords

Comments

A magilatin square has equal row and column sums and no number repeated in any row or column. It is reduced if the least value in it is 0.
a(n) is given by a quasipolynomial of degree 4 and period 840.

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173549 (all magilatin squares), A173730 (symmetry types), A174021 (reduced symmetry types), A174018 (reduced squares by largest value).

Formula

G.f.: 12*x^3/[(x-1)*(x^2-1)] - 108*x^5/[(x-1)*(x^2-1)^2] - 72*x^5/[(x-1)*(x^4-1)] - 72*x^5/[(x^3-1)*(x^2-1)] - 36*x^5/(x^5-1) + 72*x^7/[(x-1)*(x^2-1)^3] + 144*x^7/[(x-1)*(x^2-1)*(x^4-1)] + 72*x^7/[(x-1)*(x^6-1)] + 72*x^7/[(x^2-1)^2*(x^3-1)] + 72*x^7/[(x^2-1)*(x^5-1)] + 72*x^7/(x^7-1) + 72*x^9/[(x-1)*(x^4-1)^2] + 144*x^9/[(x^2-1)*(x^3-1)*(x^4-1)] + 144*x^9/[(x^3-1)*(x^6-1)] + 72*x^9/[(x^4-1)*(x^5-1)] + 72*x^11/[(x^3-1)*(x^4-1)^2] + 72*x^11/[(x^3-1)*(x^8-1)] + 72*x^11/[(x^5-1)*(x^6-1)] + 72*x^13/[(x^5-1)*(x^8-1)].

Extensions

"Distinct" values (incorrect) deleted by Thomas Zaslavsky, Apr 24 2010
Showing 1-3 of 3 results.