cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174023 The number of primes between prime(n)# and prime(n)# + prime(n)^2.

Original entry on oeis.org

2, 3, 6, 9, 17, 18, 20, 28, 25, 30, 41, 46, 41, 53, 56, 73, 62, 66, 81, 93, 85, 84, 89, 97, 101, 127, 121, 122, 119, 128, 150, 141, 144, 152, 150, 143, 174, 203, 197, 195, 196, 194, 213, 213, 218, 223, 230, 235, 249, 258, 256, 244, 264, 262, 274, 275, 278, 295
Offset: 1

Views

Author

T. D. Noe, Mar 12 2010

Keywords

Comments

Here prime(n)# denotes the product of the first n primes, A002110(n). This sequence provides numerical evidence that the smallest prime p greater than prime(n)#+1 is a prime distance from prime(n)#; that is, p-prime(n)# is a prime number, as shown in the sequence of Fortunate numbers, A005235. For p-prime(n)# to be a composite number, p would have to be greater than prime(n)#+prime(n)^2, which would imply that a(n)=0.

Examples

			For 3, the second prime, 3# is 6 and 3#+3^2 is 15. There are 3 primes between 6 and 15: 7, 11, and 13. Hence a(2)=3.
		

Programs

  • Mathematica
    Table[p=Prime[n]; prod=prod*p; Length[Select[Range[prod+1,prod+p^2-1], PrimeQ]], {n,50}]

Formula

Limit_{N->infinity} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = 1. - Alain Rocchelli, Nov 03 2022