cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174024 List of primes of the form x^2+y^2 such that tau(x^2+y^2) = bigomega(x*y).

Original entry on oeis.org

13, 17, 29, 37, 53, 101, 173, 197, 293, 677, 1373, 2213, 4493, 5333, 5477, 8837, 9413, 10613, 17957, 18773, 21317, 26573, 27893, 37253, 42437, 54293, 76733, 85853, 94253, 97973, 98597, 100493, 106277, 120413, 139133, 148997, 214373, 217157
Offset: 1

Views

Author

Michel Lagneau, Mar 05 2010

Keywords

Comments

bigomega(n) is the number of prime divisors of n (counted with multiplicity) (A001222) Because n = x^2+y^2 is prime, tau(n)= 2, and if we suppose x < y, then (x,y) = (2, p) with p prime or (x,y)=(1, 2q) with q prime.

Examples

			13 = 2^2 + 3^2, bigomega(2*3) = 2.
17 = 1+4^2, bigomega(1*4) = 2.
994013 = 2^2 + 997^2, bigomega(2*997) = 2.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/Cambridge University Press London 1935.

Crossrefs

Cf. A020882, A002313, A001222, A001221 (primes counted without multiplicity), A046660, A144494.

Programs

  • Maple
    with(numtheory):T:=array(0..50000000):U=array(0..50000000 ): k:=1:for x from 1 to 1000 do:for y from x to 1000 do:if tau(x^2+y^2)= bigomega(x*y) and type(x^2+y^2,prime)=true then T[k]:=x^2+y^2:k:=k+1:else fi:od :od:mini:=T[1]:ii:=1: for p from 1 to k-1 do:for n from 1 to k-1 do:if T[n]< mini then mini:= T[n]:ii:=n: indice:=U[n]: else fi:od:print(mini):T[ii]:= 99999999: ii:=1:mini:=T[1] :od: