cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174034 The smallest prime p such that the double-concatenation prime(n) // prime(n+1) // p is a prime number.

Original entry on oeis.org

3, 3, 7, 19, 17, 7, 17, 7, 3, 23, 11, 11, 11, 17, 3, 3, 7, 3, 11, 17, 29, 19, 13, 7, 37, 7, 23, 37, 7, 23, 7, 7, 7, 11, 7, 53, 29, 31, 31, 13, 11, 17, 7, 11, 11, 29, 23, 47, 7, 7, 7, 13, 11, 19, 67, 19, 13, 101, 59, 13, 13, 31, 17, 23, 7, 13, 29, 73, 29, 7
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 06 2010

Keywords

Comments

It is conjectured that a(n) = 3 for infinitely many n.

Examples

			n=1: 2 // 3 // 3 = 233, which is prime, so a(1) = 3.
n=2: 3 // 5 // 2 = 352, which is not prime, but 3 // 5 // 3 = 353 is, so a(2) = 3.
		

Crossrefs

Programs

  • PARI
    A174034(n)={ n=eval(Str(prime(n),prime(n+1))); for( d=1,99, n*=10; forprime( p=10^(d-1),10^d, isprime(n+p) & return(p)))} \\ M. F. Hasler, Dec 01 2010
  • Sage
    concat = lambda xx: Integer(''.join(map(str,xx)))
    A174034 = lambda x: next((p for p in Primes() if is_prime(concat([nth_prime(x), nth_prime(x+1), p])))) # D. S. McNeil, Dec 02 2010
    

Extensions

Edited and terms checked by D. S. McNeil, Dec 01 2010