A174050 Primes of the form x^2 + y^2 such that L(x)* L(y) = 1, where L is the Liouville lambda-function A008836.
2, 13, 17, 29, 37, 53, 73, 89, 97, 101, 113, 173, 181, 193, 197, 233, 241, 257, 277, 293, 313, 337, 349, 353, 373, 409, 421, 433, 449, 457, 521, 541, 569, 577, 593, 613, 641, 661, 673, 677, 709, 733, 757, 761, 809, 821, 853, 881, 929, 1021, 1033, 1049, 1069
Offset: 1
Keywords
Examples
2 is in the sequence because 2 = 1 + 1 and L(1)*L(1)= (1) *(1) = 1. 13 is in the sequence because 13 = 2^2 + 3^2 and L(2)*L(3)= (-1)*(-1) = 1. 193 is in the sequence because 193 = 12^2 + 7^2 and L(12)*L(7)= (-1)*(-1) = 1.
Programs
-
Maple
isA174050 := proc(n) local x,y ; if not isprime(n) then return false; end if; for x from 1 do if x^2 > n then return false; end if; if issqr(n-x^2) then y := sqrt(n-x^2) ; if A008836(x) * A008836(y) = 1 then return true; end if; end if; end do: end proc: for n from 1 to 1100 do if isA174050(n) then printf("%d,\n",n) ; end if; end do: # R. J. Mathar, Jul 09 2012
-
Mathematica
lambdaQ[{x_, y_}] := LiouvilleLambda[x]*LiouvilleLambda[y] == 1; Select[ Prime /@ Range[200], Or @@ lambdaQ /@ PowersRepresentations[#, 2, 2] &] (* Jean-François Alcover, Jul 30 2013 *)
Comments