cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174051 Composite numbers of the form x^2+y^2, gcd(x,y) = 1.

Original entry on oeis.org

10, 25, 26, 34, 50, 58, 65, 74, 82, 85, 106, 122, 125, 130, 145, 146, 169, 170, 178, 185, 194, 202, 205, 218, 221, 226, 250, 265, 274, 289, 290, 298, 305, 314, 325, 338, 346, 362, 365, 370, 377, 386, 394, 410, 425, 442, 445, 458, 466, 481, 482, 485, 493, 505
Offset: 1

Views

Author

Michel Lagneau, Mar 06 2010

Keywords

Comments

Composite numbers in A008784. - R. J. Mathar, Jul 08 2012

Examples

			10 is in the sequence because 10 = 1^2 + 3^2 = 2*5;
25 is in the sequence because 25 = 3^2 + 4^2 = 5*5;
65 is in the sequence because 65 = 1 + 8^2 = 4^2 + 7^2 = 5*13.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(0..50000000):U=array(0..50000000 ):k:=1:for x from 1 to 1000 do:for y from x to 1000 do:if type(x^2+y^2,prime)=false and gcd(x,y)=1 then T[k]:=x^2+y^2:k:=k+1:else fi: od :od:mini:=T[1]:ii:=1:for p from 1 to k-1 do:or n from 1 to k-1 do:if T[n] < mini then mini:= T[n]:ii:=n: indice:=U[n]: else fi:od:print(mini):T[ii]:= 99999999: ii:=1:mini:=T[1] :od:
  • PARI
    list(lim)=my(v=List(), x2, t); lim\=1; for(x=3, sqrtint(lim-1), x2=x^2; for(y=1, min(x-1, sqrtint(lim-x2)), if(gcd(x, y)==1 && !isprime(t=x2+y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Jan 27 2018