A174113 Smallest number k such that k, k+1, and k+2 are all divisible by an n-th power.
48, 1375, 33614, 2590623, 26890623, 2372890624, 70925781248, 2889212890624, 61938212890624, 4497636425781248, 8555081787109375, 2665760081787109375, 98325140081787109375, 198816740081787109374, 11776267480163574218750, 872710687480163574218750, 50783354512519836425781248
Offset: 2
Keywords
Examples
a(3) = 1375 because 1375 = 11 * 5^3; 1376 = 172 * 2^3; 1377 = 51 * 3^3.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1375, p. 135, Ellipses, Paris 2008.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 2..677 (next term has 1001 digits)
Crossrefs
Programs
-
Maple
with(numtheory):for n from 2 to 6 do: i:=0:for k from 1 to 3000000 while(i=0) do:j:=0: for a from 0 to 2 do: ii:=0:for m from 1 to 4 while(ii=0) do:p:=ithprime(m)^n:if irem(k+a,p)=0 then j:=j+1:ii:=1:else fi:od:od:if j=3 then i:=1:print(k):else fi:od:od:
-
PARI
a(n)=my(ch,t,best=30^n);forprime(a=2, 29, forprime(b=2, 29, if(a==b,next); ch=chinese(Mod(0,a^n), Mod(-1,b^n)); if(lift(ch)>=best, next); forprime(c=2, 29, if(a==c || b==c, next); t=lift(chinese(ch, Mod(-2, c^n))); if(t
Charles R Greathouse IV, Jan 16 2012
Formula
5^n < a(n) < 30^n. Can the lower bound be improved? - Charles R Greathouse IV, Jan 16 2012
Extensions
a(8)-a(18) from Charles R Greathouse IV, Jan 16 2012
Comments