A174129 Numerators of the first column of the table of fractions generated by the Akiyama-Tanigawa transform from a first row A164555(k)/A027642(k).
1, 1, -1, -1, 31, 7, -1051, -201, 56911, 18311, -24346415, -4227881, 425739604981, 2082738855, -759610463437, -1935668684041, 91825384886337407, 3104887811293639, -333936446105326262497, -8039608511660213481, 496858217433153341005061
Offset: 0
Links
- D. Merlini, R. Sprugnoli and M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
Programs
-
Maple
read("transforms3") ; A174129 := proc(n) Lin := [bernoulli(0),-bernoulli(1),seq(bernoulli(k),k=2..n+1)] ; for r from 1 to n do Lin := AKIYATANI(Lin) ; end do; numer(op(1,Lin)) ; end proc:
-
Mathematica
a[0, k_] := a[0, k] = BernoulliB[k]; a[0, 1] = 1/2; a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); a[n_] := a[n, 0] // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 14 2012 *)
Formula
a(n) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)*B(j)), where B are the Bernoulli numbers A164555/A027642. - Fabián Pereyra, Jan 06 2022
Comments