cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174216 a(1)=15; for n>1, a(n) = the smallest number k >a(n-1) such that 2*A174214(k)= 3*(k-1).

Original entry on oeis.org

15, 27, 63, 123, 279, 567, 1143, 2307, 4623, 9447, 18927, 38283, 77139, 154839, 309747, 620463, 1241823, 2483847, 4967739, 9935607, 19892547, 39785199
Offset: 1

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Comments

Theorem: If the sequence is infinite, then there exist infinitely many twin primes.
Conjecture. a(n+1)/a(n) tends to 2.

Crossrefs

Programs

  • Maple
    A174216 := proc(n) option remember ; if n =1 then 15 ; else for k from procname(n-1)+1 do if 2*A173214(k) = 3*(k-1) then return k; end if; end do ; end if; end proc: # R. J. Mathar, Mar 16 2010
  • Mathematica
    (* b = A174214 *) b[n_] := b[n] = Which[n==9, 14, CoprimeQ[b[n-1], n-1- (-1)^n], b[n-1]+1, True, 2n-4]; a[n_] := a[n] = If[n==1, 15, For[k = a[n- 1]+1, True, k++, If[2b[k] == 3(k-1), Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 02 2016 *)

Extensions

Terms from a(11) on corrected by R. J. Mathar, Mar 16 2010
I corrected the terms beginning with a(11) and added some new terms. - Vladimir Shevelev, Mar 27 2010
Terms from a(11) onwards were corrected according to independent calculations by R. Mathar, M. Alekseyev, M. Hasler and A. Heinz (SeqFan lists 30 Oct and 1 Nov 2010). - Vladimir Shevelev, Nov 02 2010

A174217 a(n) = (A174216(n)-1)/2.

Original entry on oeis.org

7, 13, 31, 61, 139, 283, 571, 1153, 2311, 4723, 9463, 19141, 38569, 77419, 154873, 310231, 620911, 1241923, 2483869, 4967803, 9946273, 19892599
Offset: 1

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Comments

Related to the generation of twin primes according to section 6 of the preprint.

Crossrefs

Programs

  • Mathematica
    (* b = A174214 *) b[n_] := b[n] = Which[n == 9, 14, CoprimeQ[b[n - 1], n - 1 - (-1)^n], b[n - 1] + 1, True, 2 n - 4];
    (* c = A174216 *) c[n_] := c[n] = If[n == 1, 15, For[k = c[n - 1] + 1, True, k++, If[2 b[k] == 3 (k - 1), Return[k]]]];
    Table[a[n] = (c[n] - 1)/2; Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 29 2019 *)

Formula

A174214(A174216(n)) = 3*a(n), n>1.

Extensions

Terms after a(11) corrected by Vladimir Shevelev, Nov 02 2010

A174453 a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.

Original entry on oeis.org

1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
Offset: 5

Views

Author

Vladimir Shevelev, Mar 20 2010

Keywords

Comments

If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.

Crossrefs

Programs

  • Maple
    A174453 := proc(n) local k,m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m,m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n),n=5..120); # R. J. Mathar, Nov 04 2010
  • Mathematica
    a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
    Table[a[n], {n, 5, 106}] (* Jean-François Alcover, Nov 29 2017 *)

Extensions

Terms beyond a(34) from R. J. Mathar, Nov 04 2010
Showing 1-3 of 3 results.