A174248 Number of tilings of a 4 X n rectangle with n tetrominoes of any shape.
1, 1, 4, 23, 117, 454, 2003, 9157, 40899, 179399, 796558, 3546996, 15747348, 69834517, 310058192, 1376868145, 6112247118, 27132236455, 120453362938, 534754586459, 2373975139658, 10538953415410, 46786795734201, 207705902269424, 922089495910044, 4093525019450760
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- S. Butler, J. Ekstrand, and S. Osborne, TETRIS Tiling, AMS Spring Central Sectional, Iowa State University, April 27-28 2013.
- R. S. Harris, Counting Nonomino Tilings and Other Things of that Ilk, G4G9 Gift Exchange book, 2010.
- R. S. Harris, Counting Polyomino Tilings.
- Wikipedia, Tetris.
- Wikipedia, Tetromino.
- Index entries for linear recurrences with constant coefficients, signature (2, 8, 8, 54, -77, -290, -76, -548, 469, 2258, 414, 1970, -1053, -6885, -1620, -3349, 1102, 9566, 3210, 2786, -489, -6047, -2600, -1102, 60, 1476, 659, 225, 39, -123, -50, -13, -3, 3, 1).
Crossrefs
Formula
G.f.: -(x^31 +3*x^30 -2*x^29 -7*x^28 -25*x^27 -78*x^26 +23*x^25 +116*x^24 +217*x^23 +604*x^22 -21*x^21 -556*x^20 -649*x^19 -1621*x^18 -175*x^17 +727*x^16 +523*x^15 +1707*x^14 +236*x^13 -470*x^12 -143*x^11 -749*x^10 -133*x^9 +166*x^8 +15*x^7 +126*x^6 +27*x^5 -23*x^4 -x^3 -6*x^2 -x +1) / (x^35 +3*x^34 -3*x^33 -13*x^32 -50*x^31 -123*x^30 +39*x^29 +225*x^28 +659*x^27 +1476*x^26 +60*x^25 -1102*x^24 -2600*x^23 -6047*x^22 -489*x^21 +2786*x^20 +3210*x^19 +9566*x^18 +1102*x^17 -3349*x^16 -1620*x^15 -6885*x^14 -1053*x^13 +1970*x^12 +414*x^11 +2258*x^10 +469*x^9 -548*x^8 -76*x^7 -290*x^6 -77*x^5 +54*x^4 +8*x^3 +8*x^2 +2*x -1). - Alois P. Heinz, Nov 26 2013
Extensions
a(0) inserted, a(11)-a(22) from Alois P. Heinz, May 07 2013
a(23)-a(25) from Alois P. Heinz, Nov 26 2013