A174249 Number of tilings of a 5 X n rectangle with n pentominoes of any shape.
1, 1, 5, 56, 501, 4006, 27950, 214689, 1696781, 13205354, 101698212, 782267786, 6048166230, 46799177380, 361683136647, 2793722300087, 21583392631817, 166790059833039, 1288885349447958, 9959188643348952, 76953117224941654, 594617039453764617, 4594660583890506956
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Jessica Gonzalez, Illustration for a(2) = 5
- R. S. Harris, Counting Nonomino Tilings and Other Things of that Ilk, G4G9 Gift Exchange book, 2010.
- R. S. Harris, Counting Polyomino Tilings
- Vaclav Kotesovec, G.f. and the recurrence (of order 324)
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, order 324.
Crossrefs
Formula
a(n) ~ c * d^n, where d =
7.727036840800092392128639105511391434436212757335030092041375597587338371937..., c =
0.13364973920881772493778581621701653927538155984099992758656160782495174... (1/d is the root of the denominator, see g.f.). - Vaclav Kotesovec, May 19 2015
Extensions
a(0) prepended, a(11)-a(22) from Alois P. Heinz, Dec 05 2013