cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378444 a(n) is the number of divisors d of n such that A083345(d) is even, where A083345(n) is the numerator of Sum(e/p: n=Product(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 4, 1, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 2, 2, 2, 1, 3, 3, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 2, 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2024

Keywords

Comments

Number of terms of A369002 that divide n.

Crossrefs

Inverse Möbius transform of A369001.
Cf. also A369257.

Programs

Formula

a(n) = Sum_{d|n} A369001(d).
a(n) = A000005(n) - A378445(n).
a(n) = Sum_{d|n} A023900(d)*A378546(n/d).
a(n) = ceiling(A174273(n)/2). [Conjectured] - Antti Karttunen, May 14 2025

A378445 a(n) is the number of divisors d of n such that A083345(d) is odd, where A083345(n) is the numerator of Sum(e/p: n=Product(p^e)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 4, 2, 3, 1, 6, 1, 3, 2, 4, 1, 6, 1, 4, 2, 3, 2, 6, 1, 3, 2, 6, 1, 6, 1, 4, 3, 3, 1, 7, 1, 4, 2, 4, 1, 6, 2, 6, 2, 3, 1, 8, 1, 3, 3, 5, 2, 6, 1, 4, 2, 6, 1, 9, 1, 3, 3, 4, 2, 6, 1, 7, 2, 3, 1, 8, 2, 3, 2, 6, 1, 9, 2, 4, 2, 3, 2, 9, 1, 4, 3, 6, 1, 6, 1, 6, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2024

Keywords

Comments

Number of terms of A369003 that divide n.

Crossrefs

Inverse Möbius transform of A377874.
Cf. also A174273, A378443.

Programs

  • PARI
    A377874(n) = { my(f=factor(n)); (numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1])))%2); };
    A378445(n) = sumdiv(n,d,A377874(d));

Formula

a(n) = Sum_{d|n} A377874(d).
a(n) = A000005(n) - A378444(n).

A378443 Inverse Möbius transform of A372573.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 3, 4, 4, 2, 2, 2, 4, 2, 2, 2, 3, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 3, 2, 4, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 4, 2, 3, 2, 3, 2, 4, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2024

Keywords

Comments

Number of terms of A339746 that divide n.

Crossrefs

Cf. also A174273, A378444.

Programs

Formula

a(n) = Sum_{d|n} A372573(d).
Showing 1-3 of 3 results.