cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174282 a(n) = 3^n mod M(n) where M(n) = A014963(n) is the exponential of the Mangoldt function.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Mats Granvik, Mar 15 2010

Keywords

Comments

Appears to be always either 0 or 1.
This follows from Fermat's Little Theorem. - Charles R Greathouse IV, Feb 13 2011

Crossrefs

Programs

  • Mathematica
    f[n_] := PowerMod[3, n - 1, Exp@ MangoldtLambda@ n]; Array[f, 105] (* Robert G. Wilson v, Jan 22 2015 *)
    Table[Mod[3^(n-1) , E^(MangoldtLambda[n]) ], {n, 1, 100}] (* G. C. Greubel, Nov 25 2015 *)
  • PARI
    vector(95,n,ispower(k=n,,&k);isprime(k)&k!=3) \\ Charles R Greathouse IV, Feb 13 2011

Formula

a(n) = A000244(n) mod A014963(n).
a(n) = 1 if n = p^k for k > 0 and p a prime not equal to 3, a(n) = 0 otherwise. - Charles R Greathouse IV, Feb 13 2011

Extensions

More terms from Robert G. Wilson v, Jan 22 2015