A174282 a(n) = 3^n mod M(n) where M(n) = A014963(n) is the exponential of the Mangoldt function.
0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := PowerMod[3, n - 1, Exp@ MangoldtLambda@ n]; Array[f, 105] (* Robert G. Wilson v, Jan 22 2015 *) Table[Mod[3^(n-1) , E^(MangoldtLambda[n]) ], {n, 1, 100}] (* G. C. Greubel, Nov 25 2015 *)
-
PARI
vector(95,n,ispower(k=n,,&k);isprime(k)&k!=3) \\ Charles R Greathouse IV, Feb 13 2011
Formula
a(n) = 1 if n = p^k for k > 0 and p a prime not equal to 3, a(n) = 0 otherwise. - Charles R Greathouse IV, Feb 13 2011
Extensions
More terms from Robert G. Wilson v, Jan 22 2015
Comments