cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174284 Number of distinct finite resistances that can be produced using at most n equal resistors (n or fewer resistors) in series, parallel and/or bridge configurations.

Original entry on oeis.org

0, 1, 3, 7, 15, 35, 79, 193, 493, 1299, 3429, 9049, 23699, 62271, 163997, 433433, 1147659, 3040899
Offset: 0

Views

Author

Sameen Ahmed Khan, Mar 15 2010

Keywords

Comments

This sequence is a variation on A153588, which uses only series and parallel combinations. The circuits with exactly n unit resistors are counted by A174283, so this sequence counts the union of the sets, which are counted by A174283(k), k <= n. - Rainer Rosenthal, Oct 27 2020
For n = 0 the resistance is infinite, therefore the number of finite resistances is a(0) = 0. Sequence A180414 counts all resistances (including infinity) and so has A180414(0) = 1 and A180414(n) = a(n) + 1 for all n up to n = 7. For n > 7 the networks get more complex, producing more resistance values, so A180414(n) > a(n) + 1. - Rainer Rosenthal, Feb 13 2021

Examples

			Since a bridge circuit requires a minimum of five resistors, the first four terms coincide with A153588. The fifth term also coincides since the set corresponding to five resistors for the bridge, i.e. {1}, is already obtained in the fourth set corresponding to the fourth term in A153588. [Edited by _Rainer Rosenthal_, Oct 27 2020]
		

Crossrefs

Programs

Formula

a(n) = #(union of all S(k), k <= n), where S(k) is the set which is counted by A174283(k). - Rainer Rosenthal, Oct 27 2020

Extensions

a(8) corrected, a(9)-a(17) from Rainer Rosenthal, Oct 27 2020
Title changed and a(0) added by Rainer Rosenthal, Feb 13 2021