A174287 Smallest natural square base q = q(k) that concatenation prime(k)//prime(k+1)//q^2 (k = 1, 2, ...) is a prime number.
3, 3, 1, 11, 1, 1, 1, 1, 1, 1, 3, 7, 31, 13, 9, 1, 1, 141, 53, 37, 9, 11, 1, 7, 61, 7, 17, 13, 17, 1, 17, 11, 7, 23, 7, 27, 27, 7, 1, 9, 19, 29, 7, 29, 19, 3, 3, 1, 43, 67, 1, 7, 7, 9, 9, 1, 13, 21, 7, 7, 7, 1, 1, 43, 1, 1, 57, 1, 67, 7, 17
Offset: 1
Examples
3^2=9, 239 = prime(52) => q(1) = 3 359 = prime(72) => q(2) = 3 k=18, prime(18) = 61, 141^2 = 19881, 616719881 = prime(32151650) => q(18) = 141
References
- J.-P. Allouche, J. Shallit: Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, 2003
Comments