A174332 Least prime q of which prime(n) is a proper binary substring.
5, 7, 11, 23, 23, 29, 71, 79, 47, 59, 127, 101, 83, 107, 191, 107, 239, 251, 269, 199, 293, 317, 167, 179, 353, 229, 359, 431, 439, 227, 383, 263, 787, 557, 599, 607, 631, 419, 1447, 347, 359, 727, 383, 449, 709, 797, 467, 479, 739, 919, 467, 479, 967, 503, 769
Offset: 1
Examples
a(1)=5 since 2_10 = 10_2 is a substring of 5_10 = 101_2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a174332 = a208238 . a000040 -- Reinhard Zumkeller, Feb 14 2013
-
Mathematica
f[n_] := Block[{k = n + 1, p = StringTake[ ToString@ IntegerDigits[ Prime@n, 2], {2, -2}]}, While[q = StringTake[ ToString@ IntegerDigits[ Prime@k, 2], {2, -2}]; StringPosition[q, p] == {}, k++ ]; Prime@k]; Array[f, 55]
Comments