cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174332 Least prime q of which prime(n) is a proper binary substring.

Original entry on oeis.org

5, 7, 11, 23, 23, 29, 71, 79, 47, 59, 127, 101, 83, 107, 191, 107, 239, 251, 269, 199, 293, 317, 167, 179, 353, 229, 359, 431, 439, 227, 383, 263, 787, 557, 599, 607, 631, 419, 1447, 347, 359, 727, 383, 449, 709, 797, 467, 479, 739, 919, 467, 479, 967, 503, 769
Offset: 1

Views

Author

Robert G. Wilson v, Mar 15 2010

Keywords

Comments

a(n) = A208238(A000040(n)) = A208241(A000040(n)). - Reinhard Zumkeller, Feb 14 2013

Examples

			a(1)=5 since 2_10 = 10_2 is a substring of 5_10 = 101_2.
		

Crossrefs

Programs

  • Haskell
    a174332 = a208238 . a000040  -- Reinhard Zumkeller, Feb 14 2013
  • Mathematica
    f[n_] := Block[{k = n + 1, p = StringTake[ ToString@ IntegerDigits[ Prime@n, 2], {2, -2}]}, While[q = StringTake[ ToString@ IntegerDigits[ Prime@k, 2], {2, -2}]; StringPosition[q, p] == {}, k++ ]; Prime@k]; Array[f, 55]