A174419 Numerators T(0,k) of a top row sequence which generates a signed variant (-1)^n*T(n,0) of itself in the column k=0 under repeated application of the Akiyama-Tanigawa transform.
0, 1, 3, 29, 213, 36361, 5004267, 161159569259, 1604875494550299, 700591444676447407855, 272366765005761133289834097, 441056613421971051554626329901900903, 48264034659082736983682770426524745021503, 162486296853709899698219310156295323853814636455303
Offset: 0
Links
- D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
Programs
-
Maple
nmax := 10 ; T := array(0..nmax,0..nmax) ; T[0,0] := 0 ; T[0,1] := 1 ; T[1,0] := -1 ; for n from 2 to nmax do T[0,n] := x ; for r from 1 to n do k := n-r ; T[r,k] := (k+1)*(T[r-1,k]-T[r-1,k+1]) ; end do: y := solve( T[n,0] = (-1)^n*T[0,n]) ; T[0,n] := y; for r from 1 to n do k := n-r ; T[r,k] := (k+1)*(T[r-1,k]-T[r-1,k+1]) ; end do: end do: seq( numer(T[0,i]),i=0..nmax) ; # R. J. Mathar, Dec 02 2010
-
Mathematica
nmax=10; t[0,0]=0; t[0,1]=1; t[1,0]=-1; For[n=2, n<= nmax, n++, t[0,n]=x; For[r=1, r<=n, r++, k=n-r; t[r,k]=(k+1)*(t[r-1,k]-t[r-1,k+1]);]; y=x/.Solve[t[n,0]==(-1)^n*t[0,n]]//First; t[0,n]=y; For[r=1, r<=n, r++, k=n-r; t[r,k]=(k+1)*(t[r-1,k]-t[r-1,k+1]);]]; Table[ t[0,i],{i,0,nmax}] // Numerator (* Jean-François Alcover, Sep 18 2012, translated from Maple *)
Comments