cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176600 Numbers n such that concatenations n//13 and n//31 are consecutive primes.

Original entry on oeis.org

19, 190, 250, 346, 378, 400, 402, 456, 516, 553, 567, 586, 664, 759, 762, 853, 931, 972, 1140, 1156, 1161, 1242, 1266, 1284, 1314, 1317, 1338, 1398, 1440, 1645, 1744, 1785, 1840, 1875, 1930, 1944, 2227, 2248, 2271, 2287, 2316, 2397, 2401, 2467, 2568, 2602
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

Keywords

Comments

p = n//13 = n * 10^2 + 13 = prime(i) , q = n//31 = n * 10^2 + 31 = prime(i+1)
p and q are formed by the same digits (counted with multiplicity)
n = m//k (k = 0, 1, ...,9)
List of m < 10^3
0//13: 19, 25, 40, 114, 144, 184, 193, 280, 411, 415, 567, 604, 634, 777, 852, 862, 870, 943 (18)
1//13: 93, 116, 227, 240, 392, 462, 543, 570, 611, 675, 689, 734, 759, 821, 822, 878, 969, 986 (18)
2//13: 40, 76, 97, 124, 260, 338, 365, 415, 505, 545, 599, 625, 788, 809 (14)
3//13: 55, 85, 312, 349, 421, 424, 451, 454, 619, 622, 724, 928 (12)
4//13: 66, 128, 131, 174, 194, 293, 345, 414, 657, 687, 702, 741, 752, 867, 870, 939 (16)
5//13: 164, 178, 187, 277, 379, 416, 481, 536, 754, 824, 935, 974, 995 (13)
6//13: 34, 45, 51, 58, 115, 126, 231, 336, 402, 432, 439, 489, 502, 541, 705, 780, 838, 850, 909, 985 (20)
7//13: 56, 131, 222, 228, 239, 246, 309, 480, 530, 716, 732, 747, 761, 792, 831, 936, 981 (17)
8//13: 37, 133, 139, 224, 256, 286, 301, 304, 497, 518, 550, 559, 562, 728, 856, 907 (16)
9//13: 1, 75, 526, 558, 681, 720, 765, 916, 943 (9)
The sequence could be defined as "Numbers n such that 100n+13 and 100n+31 are consecutive primes". In that sense it could be considered to be independent of the decimal numeral system. - M. F. Hasler, Dec 04 2010

Examples

			19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 is 1st term
190//13 = 19013 = prime(2161), 190//31 = 19031 = prime(2162), 190 is 2nd term
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeQ[# 100+13]&&NextPrime[# 100+13]==# 100+31&] (* Harvey P. Dale, Jun 23 2022 *)
  • PARI
    A176600(n,print_all=0)={ for(k=1,1e9,isprime(100*k+13) || next;nextprime(100*k+17)==100*k+31||next;print_all & print1(k",");n-- || return(k))} \\ M. F. Hasler, Dec 04 2010

A176601 Primes p that p//13 and p//31 are consecutive primes.

Original entry on oeis.org

19, 853, 2287, 2467, 4243, 4513, 4621, 5431, 5701, 7243, 7477, 7591, 7927, 8221, 8317, 9283, 9439, 9817, 10039, 12781, 13933, 14461, 14923, 15727, 16693, 17443, 18199, 18217, 19207, 20749, 21139, 22147, 23761, 25471, 26701, 26953, 27481, 28111, 28447, 28579
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

Keywords

Comments

See A176600.

Examples

			19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 = prime(8) is 1st term.
853//13 = 85313 = prime(8306), 853//31 = 85331 = prime(8307), 853 = prime(147) is 2nd term.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n],p13,p31},p13=FromDigits[ Join[ idn,{1,3}]];p31=FromDigits[Join[idn,{3,1}]];PrimeQ[p13]&&NextPrime[p13] == p31]; Select[Prime[Range[16000]],okQ] (* Harvey P. Dale, Jan 21 2012 *)

Extensions

More terms from Harvey P. Dale, Jan 21 2012
Showing 1-2 of 2 results.