cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174468 a(n) = Sum_{d|n} d*sigma(n/d)*sigma(d).

Original entry on oeis.org

1, 9, 16, 53, 36, 144, 64, 261, 178, 324, 144, 848, 196, 576, 576, 1173, 324, 1602, 400, 1908, 1024, 1296, 576, 4176, 986, 1764, 1744, 3392, 900, 5184, 1024, 5013, 2304, 2916, 2304, 9434, 1444, 3600, 3136, 9396, 1764, 9216, 1936, 7632, 6408, 5184, 2304
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Logarithmic derivative of A174467.
Dirichlet convolution of A064987 and A000203. - R. J. Mathar, Feb 06 2011

Crossrefs

Cf. A174467, A000203 (sigma), A064987.

Programs

  • Mathematica
    Table[Sum[d*DivisorSigma[1,d]*DivisorSigma[1,n/d], {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
    f[p_, e_] := (p^(2*e + 4) - (e + 2)*(p^2 - 1)*p^(e + 1) - 1)/((p - 1)^3*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d))}
    
  • PARI
    a(n)=sumdiv(n, x, x * sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */

Formula

a(n) = sigma(n)^2 iff n is squarefree.
Dirichlet g.f. zeta(s) * (zeta(s-1))^2 * zeta(s-2). - R. J. Mathar, Feb 06 2011
Sum_{k=1..n} a(k) ~ Pi^4 * zeta(3) * n^3 / 108. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = (p^(2*e+4) - (e+2)*(p^2-1)*p^(e+1) - 1)/((p-1)^3*(p+1)). - Amiram Eldar, Aug 27 2023