cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174485 Triangle of numerators T(n,k) in the matrix {T(n,k)/(n-k)!,n>=k>=0} that transforms diagonals of the array (A174480) of coefficients in successive iterations of x*exp(x).

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 70, 16, 3, 1, 1973, 308, 33, 4, 1, 94216, 11048, 810, 56, 5, 1, 6851197, 639972, 35325, 1672, 85, 6, 1, 706335064, 54671188, 2408568, 85904, 2990, 120, 7, 1, 98105431657, 6471586298, 236624733, 6741544, 176885, 4860, 161, 8, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2010

Keywords

Examples

			Triangle T begins:
1;
1,1;
5,2,1;
70,16,3,1;
1973,308,33,4,1;
94216,11048,810,56,5,1;
6851197,639972,35325,1672,85,6,1;
706335064,54671188,2408568,85904,2990,120,7,1;
98105431657,6471586298,236624733,6741544,176885,4860,161,8,1;
17669939141440,1014487323984,31654735416,749040472,15706200,325368,7378,208,9,1;
...
Form a table of coefficients in iterations of x*exp(x), like so:
n=0: [1, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...];
n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...];
n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...];
n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...];
n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...];
n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!+ 15441636/6!, ...];
n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...];
n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...];
...
and form matrix D from this triangle T by: D(n,k) = T(n,k)/(n-k)!,
then matrix D transforms diagonals in the above table as illustrated by:
D * A174481 = A174482, D * A174482 = A174483, D * A174483 = A174484,
where the diagonals begin:
A174481: [1, 1, 6/2!, 102/3!, 3400/4!, 187455/5!, ...];
A174482: [1, 2, 15/2!, 274/3!, 9425/4!, 527631/5!, ...];
A174483: [1, 3, 28/2!, 575/3!, 21216/4!, 1242892/5!, ...];
A174484: [1, 4, 45/2!, 1041/3!, 41629/4!, 2582028/5!, ...].
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(n+2))), M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, xEx)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (n-k)!*(P~*N~^-1)[n+1, k+1]}

A174487 Column 1 of triangle A174485.

Original entry on oeis.org

1, 2, 16, 308, 11048, 639972, 54671188, 6471586298, 1014487323984, 203492881479464, 50842872702666524, 15484223252089602342, 5646860009850046968472, 2429577079632942917710580
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2010

Keywords

Comments

Triangular matrix described by A174485 transforms diagonals of the array A174480 of coefficients of successive iterations of x*exp(x).

Crossrefs

Programs

  • PARI
    {a(n,k=1)=local(F=x, xEx=x*exp(x+x*O(x^(n+k+1))), M, N, P, m=n+k); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, xEx)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); n!*(P~*N~^-1)[n+k+1, k+1]}

A174488 Column 2 of triangle A174485.

Original entry on oeis.org

1, 3, 33, 810, 35325, 2408568, 236624733, 31654735416, 5532363865977, 1223887080470256, 334272773792556369, 110467177430468340408, 43442224822360939240629, 20048090531903711663566248
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2010

Keywords

Comments

Triangular matrix described by A174485 transforms diagonals of the array A174480 of coefficients of successive iterations of x*exp(x).

Crossrefs

Programs

  • PARI
    {a(n,k=2)=local(F=x, xEx=x*exp(x+x*O(x^(n+k+1))), M, N, P, m=n+k); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, xEx)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); n!*(P~*N~^-1)[n+k+1, k+1]}

A174489 Column 3 of triangle A174485.

Original entry on oeis.org

1, 4, 56, 1672, 85904, 6741544, 749040472, 111786940612, 21558649749088, 5215883627856592, 1546429233541304456, 551278120123210461436, 232603216443181020788944, 114634034948809175011787176
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2010

Keywords

Comments

Triangular matrix described by A174485 transforms diagonals of the array A174480 of coefficients of successive iterations of x*exp(x).

Crossrefs

Programs

  • PARI
    {a(n,k=3)=local(F=x, xEx=x*exp(x+x*O(x^(n+k+1))), M, N, P, m=n+k); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, xEx)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); n!*(P~*N~^-1)[n+k+1, k+1]}
Showing 1-4 of 4 results.