cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174480 Rectangular array of coefficients in successive iterations of x*exp(x), as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 23, 1, 1, 5, 28, 102, 104, 1, 1, 6, 45, 274, 861, 537, 1, 1, 7, 66, 575, 3400, 8598, 3100, 1, 1, 8, 91, 1041, 9425, 50734, 98547, 19693, 1, 1, 9, 120, 1708, 21216, 187455, 880312, 1270160, 136064, 1, 1, 10, 153, 2612, 41629
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Comments

Triangle A174485 forms a matrix that transforms a diagonal into an adjacent diagonal in this array.

Examples

			Form an array of coefficients in the iterations of x*exp(x), which begin:
n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...];
n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...];
n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...];
n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...];
n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...];
n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!, 15441636/6!, ...];
n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...];
n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...];
n=9: [1, 9, 153/2!, 3789/3!, 122625/4!, 4885389/5!, 230689017/6!, ...];
n=10:[1, 10, 190/2!, 5275/3!, 191800/4!, 8599285/5!, 457584940/6!,...];
...
This array begins with the above unreduced numerators for n >= 1, k >= 1.
		

Crossrefs

Cf. A174485, diagonals: A174481, A174482, A174483, A174484.

Programs

  • PARI
    {T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(k+1)))); for(i=1,n,F=subst(F, x, xEx));(k-1)!*polcoeff(F, k)}

Formula

T(n,k) = [x^k/(k-1)! ] G_{n}(x) where G_{n}(x) = G_{n-1}(x*exp(x)) with G_0(x)=x, for n>=1, k>=1.

A174494 a(n) = coefficient of x^n/(n-1)! in the 4-fold iteration of x*exp(x).

Original entry on oeis.org

1, 4, 28, 274, 3400, 50734, 880312, 17357736, 382463824, 9298086490, 246914949376, 7104423326356, 220000621675912, 7290852811359654, 257332393857067720, 9632914084301343304, 381050245422453157408
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 4*x^2 + 28*x^3/2! + 274*x^4/3! + 3400*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n)));for(i=1,4,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
    
  • PARI
    {a(n)=sum(k=0,n-1,binomial(n-1,k)*sum(j=0,n-1-k,binomial(n-1-k,j)*(k+1)^j*sum(i=0,n-1-k-j,binomial(n-1-k-j,i)*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i))))}

Formula

O.g.f.: Sum_{n>=1} A174493(n)*x^n/(1-n*x)^n, where A174493(n) = [x^n/(n-1)! ] E(E(E(x))) and E(x) = x*exp(x).
a(n)=Sum_{k=0..n-1, j=0..n-1-k, i=0..n-1-k-j} C(n-1,k)*C(n-1-k,j)*C(n-1-k-j,i)*(k+1)^j*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i).
E.g.f. equals the 2-fold iteration of the e.g.f. of A080108.

A174495 a(n) = coefficient of x^n/(n-1)! in the 5-fold iteration of x*exp(x).

Original entry on oeis.org

1, 5, 45, 575, 9425, 187455, 4367245, 116322645, 3479863345, 115353325835, 4192244804645, 165607074622665, 7060695856372105, 322973775761169135, 15770136907303728205, 818373668098974428885, 44963322539225628107105
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 5*x^2 + 45*x^3/2! + 575*x^4/3! + 9425*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1,5,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}

Formula

O.g.f.: Sum_{n>=1} A174494(n)*x^n/(1-n*x)^n, where A174494(n) = [x^n/(n-1)! ] E(E(E(E(x)))) and E(x) = x*exp(x).

A174496 a(n) = coefficient of x^n/(n-1)! in the 6-fold iteration of x*exp(x).

Original entry on oeis.org

1, 6, 66, 1041, 21216, 527631, 15441636, 518651881, 19630068656, 825581830491, 38159948599956, 1921319136589221, 104603652465885096, 6120324106269585751, 382829011514506048556, 25484466375276284094561
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 6*x^2 + 66*x^3/2! + 1041*x^4/3! + 21216*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1,6,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}

Formula

O.g.f.: Sum_{n>=1} A174495(n)*x^n/(1-n*x)^n, where A174495(n) = [x^n/(n-1)! ] E(E(E(E(E(x))))) and E(x) = x*exp(x).
E.g.f. equals the 2-fold iteration of the e.g.f. of A174493.
E.g.f. equals the 3-fold iteration of the e.g.f. of A080108.
Showing 1-4 of 4 results.