A174499 Smallest number whose square starts and ends with (at least) n identical digits.
1, 88, 10538, 235700, 10541000, 57735000, 7453560000, 14907120000, 18257418600000, 29814239700000, 298142397000000, 1490711985000000, 14907119850000000, 105409255338950000000, 7453559924999300000000, 10540925533894600000000
Offset: 1
Examples
a(3) = 10538 because 10538^2 = 111049444 starts and ends in 3 identical digits. a(5) = 10541000 because 10541000^2 = 111112681000000 starts with 5 identical digits and ends with 6 identical digits.
Programs
-
Maple
with(numtheory):T:=array(1..100):p0:=10:for k from 2 to 10 do: id:= 0:for p from p0 to 100000000 while(id=0) do:n:=p^2:l:=length(n):n0:=n:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :T[m]:=u:od:z:=0:for a from 1 to k-1 do: if T[l]=T[l-a] and T[1]=T[1+a] then z:=z+1:else fi:od:if z=k-1 then print(p):id:=1:p0:=p:else fi:od:od:
Formula
For n > 3, a(n) = A119998(n)*10^q, q = floor(n+1)/2. [corrected by Bernard Schott, Aug 08 2021]
Extensions
Name clarified and a(10) and a(12) corrected by Bernard Schott, Aug 08 2021
Comments