A174526 Triangle t(n,m) = 2*A022166(n,m)-binomial(n,m), read by rows, 0<=m<=n.
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 300, 300, 57, 1, 1, 120, 1287, 2770, 1287, 120, 1, 1, 247, 5313, 23587, 23587, 5313, 247, 1, 1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1, 1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834
Offset: 0
Examples
1; 1, 1; 1, 4, 1; 1, 11, 11, 1; 1, 26, 64, 26, 1; 1, 57, 300, 300, 57, 1; 1, 120, 1287, 2770, 1287, 120, 1; 1, 247, 5313, 23587, 23587, 5313, 247, 1; 1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1; 1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834, 1013, 1; 1, 2036, 348457, 12695310, 107487764, 218443050, 107487764, 12695310, 348457, 2036, 1;
Crossrefs
Cf. A008292.
Programs
-
Maple
A174526 := proc(n,k) 2*A022166(n,k)-binomial(n,k) ; end proc: seq(seq(A174526(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
Mathematica
c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m]; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}] (* second program: *) t[n_, m_] := 2 QBinomial[n, m, 2] - Binomial[n, m]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
Comments