cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174527 Triangle T(n,m) = 2*A022167(n,m) - binomial(n, m), 0 <= m <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 23, 23, 1, 1, 76, 254, 76, 1, 1, 237, 2410, 2410, 237, 1, 1, 722, 22007, 67740, 22007, 722, 1, 1, 2179, 198905, 1851507, 1851507, 198905, 2179, 1, 1, 6552, 1792492, 50190504, 151826374, 50190504, 1792492, 6552, 1, 1, 19673, 16139204
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 21 2010

Keywords

Comments

Row sums are 1, 2, 8, 48, 408, 5296, 113200, 4105184, 255805472, 27442457664, 5089653253824, ... = 2*A006117(n)-2^n.

Examples

			Triangle begins
  1;
  1,    1;
  1,    6,       1;
  1,   23,      23,        1;
  1,   76,     254,       76,         1;
  1,  237,    2410,     2410,       237,        1;
  1,  722,   22007,    67740,     22007,      722,       1;
  1, 2179,  198905,  1851507,   1851507,   198905,    2179,    1;
  1, 6552, 1792492, 50190504, 151826374, 50190504, 1792492, 6552, 1;
		

Crossrefs

Cf. A060187.

Programs

  • Maple
    A174527 := proc(n,k)
            2*A022167(n,k)-binomial(n,k) ;
    end proc:
    seq(seq(A174527(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
  • Mathematica
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]