A174527 Triangle T(n,m) = 2*A022167(n,m) - binomial(n, m), 0 <= m <= n, read by rows.
1, 1, 1, 1, 6, 1, 1, 23, 23, 1, 1, 76, 254, 76, 1, 1, 237, 2410, 2410, 237, 1, 1, 722, 22007, 67740, 22007, 722, 1, 1, 2179, 198905, 1851507, 1851507, 198905, 2179, 1, 1, 6552, 1792492, 50190504, 151826374, 50190504, 1792492, 6552, 1, 1, 19673, 16139204
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 6, 1; 1, 23, 23, 1; 1, 76, 254, 76, 1; 1, 237, 2410, 2410, 237, 1; 1, 722, 22007, 67740, 22007, 722, 1; 1, 2179, 198905, 1851507, 1851507, 198905, 2179, 1; 1, 6552, 1792492, 50190504, 151826374, 50190504, 1792492, 6552, 1;
Crossrefs
Cf. A060187.
Programs
-
Maple
A174527 := proc(n,k) 2*A022167(n,k)-binomial(n,k) ; end proc: seq(seq(A174527(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
Mathematica
c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m]; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
Comments