A174528 Triangle T(n,m) = 2*A022168(n,m) - binomial(n, m), 0 <= m <= n, read by rows.
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 708, 166, 1, 1, 677, 11584, 11584, 677, 1, 1, 2724, 186171, 753590, 186171, 2724, 1, 1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1, 1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 8, 1; 1, 39, 39, 1; 1, 166, 708, 166, 1; 1, 677, 11584, 11584, 677, 1; 1, 2724, 186171, 753590, 186171, 2724, 1; 1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1; 1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190, 43682, 1;
Programs
-
Maple
A174528 := proc(n,k) 2*A022168(n,k)-binomial(n,k) ; end proc: seq(seq(A174528(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
Mathematica
c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m]; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}] (* alternate program *) (* First run the program for A022168 to define gaussianBinom *) Column[Table[2gaussianBinom[n, k, 4] - Binomial[n, k], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
Comments