cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174528 Triangle T(n,m) = 2*A022168(n,m) - binomial(n, m), 0 <= m <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 708, 166, 1, 1, 677, 11584, 11584, 677, 1, 1, 2724, 186171, 753590, 186171, 2724, 1, 1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1, 1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 21 2010

Keywords

Comments

Row sums are 1, 2, 10, 80, 1042, 24524, 1131382, 102819584, 18742118986, 6775774063892, 4926666912583390, ... = 2*A006118(n) - 2^n.
This triangle essentially compares a Gaussian binomial equivalent to Pascal's triangle and Pascal's triangle itself. - Alonso del Arte, Nov 14 2011

Examples

			Triangle begins
  1;
  1,     1;
  1,     8,        1;
  1,    39,       39,          1;
  1,   166,      708,        166,           1;
  1,   677,    11584,      11584,         677,          1;
  1,  2724,   186171,     753590,      186171,       2724,        1;
  1, 10915,  2981685,   48417191,    48417191,    2981685,    10915,     1;
  1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190, 43682, 1;
		

Programs

  • Maple
    A174528 := proc(n,k)
            2*A022168(n,k)-binomial(n,k) ;
    end proc:
    seq(seq(A174528(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
  • Mathematica
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
    (* alternate program *)
    (* First run the program for A022168 to define gaussianBinom *)
    Column[Table[2gaussianBinom[n, k, 4] - Binomial[n, k], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *)