cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174550 Run lengths of 2 or larger for consecutive prime numbers in A006577.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 3, 4, 2, 5, 4, 3, 2, 3, 4, 2, 2, 2, 2, 3, 3, 2, 5, 2, 2, 3, 2, 3, 2, 2, 3, 8, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 6, 3, 4, 2, 2, 3, 3, 2, 2, 4, 2, 2, 3, 6, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 3, 5, 3, 3, 2, 8, 2, 2, 2, 2, 3, 8, 4, 3, 3, 3, 4, 2, 3, 8, 2, 3, 3, 5, 3
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2010

Keywords

Comments

This sequence is given only for n <=5000 with max(s(n)) = 10. But we can find long sequences of primes, for example,length(s(12956))= 55, and corresponding to A006577(282984 + k), k = 0,1,...,54. We obtain a sequence of 55 consecutive prime numbers given in the example below.

Examples

			a(1) = 3 represents the run (7, 2, 5).
a(2) = 2 represents the run (3, 19).
a(3) = 2 represents the run (17, 17).
a(7) = 4 represents the run (19, 19, 107, 107).
a(12956) = 55 represents the run (83, 251, 83, 251, 127, 127, 127, 251, 83, 83, 83, 83, 83, 83, 83, 83, 83, 251, 83, 83, 83, 83, 83, 83, 101, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 251, 251, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83)
		

Crossrefs

Programs

  • Maple
     nn:=2000:T:=array(1..nn):for n from 1 to nn do: m:=n:for p from 0 to 1000 while (m<>1) do: if irem(m,2)=1 then m:=3*m+1:else m:=m/2:fi:od:T[n]:=p:od:ii:=1:for i from 1 to nn do:if type(T[i],prime)=true and type(T[i+1],prime)=true then ii:=ii+1:else if ii<>1 then printf(`%d, `, ii):ii:=1:else fi:fi:od:
Showing 1-1 of 1 results.