A174563 Number of 3 X n Latin rectangles such that every element of the second row has the same cyclic order (see comment).
1, 14, 133, 3300, 93889, 3391086, 148674191, 7796637196, 480640583751, 34370030511334, 2818294139246649, 262403744798653716, 27506121212584723373, 3222018028986227724702, 418998630100386520363619, 60138044879434564251209580, 9477043948863636836099726259, 1632099068624734991723488992214
Offset: 3
Keywords
References
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. [Journal published by the Academy of Sciences of Russia], 4 (1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian) [English translation in Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257)].
Formula
Let G_n = A000296(n) = n! * Sum_{2*k_2+...+n*k_n=n, k_i>=0} Product_{i=2,...,n} (k_i!*i!^k_i)^(-1). Then a(n) = Sum_{k=0,...,floor(n/2)} binomial(n,k) * G_k * G_(n-k) * u_(n-2*k), where u(n) = A000179(n). - Vladimir Shevelev, Mar 30 2016
Extensions
More terms from William P. Orrick, Jul 25 2020
Comments