cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174624 Triangle read by rows: T(n,k) = prime(n) mod 2^Omega(k), where Omega() is the number of prime divisors (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, 3, 1, 3, 0, 1, 1, 3, 1, 3, 1, 7, 3, 0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 0, 1, 1, 3, 1, 3, 1, 7, 3, 3, 1, 0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 0, 1, 1, 3, 1, 3, 1, 7, 3, 3, 1, 7, 1, 3, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 29 2010

Keywords

Examples

			Triangle begins:
  0;
  0, 1;
  0, 1, 1;
  0, 1, 1, 3;
  0, 1, 1, 3, 1;
  0, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Maple
    A174624 := proc(n,k) ithprime(n) mod (2^numtheory[bigomega](k)) ; end proc:
    seq(seq(A174624(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Nov 30 2010
  • Mathematica
    Table[Mod[Prime[n],2^PrimeOmega[k]],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Jun 02 2016 *)