A174624 Triangle read by rows: T(n,k) = prime(n) mod 2^Omega(k), where Omega() is the number of prime divisors (counted with multiplicity).
0, 0, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, 3, 1, 3, 0, 1, 1, 3, 1, 3, 1, 7, 3, 0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 0, 1, 1, 3, 1, 3, 1, 7, 3, 3, 1, 0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 0, 1, 1, 3, 1, 3, 1, 7, 3, 3, 1, 7, 1, 3, 3
Offset: 1
Examples
Triangle begins: 0; 0, 1; 0, 1, 1; 0, 1, 1, 3; 0, 1, 1, 3, 1; 0, 1, 1, 1, 1, 1;
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A174624 := proc(n,k) ithprime(n) mod (2^numtheory[bigomega](k)) ; end proc: seq(seq(A174624(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Nov 30 2010
-
Mathematica
Table[Mod[Prime[n],2^PrimeOmega[k]],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Jun 02 2016 *)