cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174810 A transform of the little Schroeder numbers A001003.

Original entry on oeis.org

1, 1, 4, 17, 81, 410, 2169, 11847, 66306, 378297, 2192011, 12864668, 76313865, 456837181, 2756271064, 16743326577, 102319639173, 628599899558, 3880049052441, 24051163355499, 149654739889478, 934426798835377
Offset: 0

Views

Author

Paul Barry, Mar 29 2010

Keywords

Comments

Hankel transform is A174811.

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2-Sqrt[1-6*x-5*x^2+2*x^3+x^4])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 30 2014 *)
  • PARI
    x='x+O('x^66); Vec((1+x+x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(4*x*(1+x))) \\ Joerg Arndt, Jan 30 2014

Formula

G.f.: (1+x+x^2-sqrt(1-6x-5x^2+2x^3+x^4))/(4x(1+x));
G.f.: 1/(1-x(1+x)/(1-2x(1+x)/(1-x(1+x)/(1-2x(1+x)/(1-... (continued fraction);
a(n)=sum{k=0..n, C(k,n-k)*A001003(k)}.
Recurrence: (n+1)*a(n) = (5-n)*a(n-5) - 3*(n-4)*a(n-4) + 3*(n-1)*a(n-3) + (11*n-13)*a(n-2) + (5*n-4)*a(n-1). - Fung Lam, Jan 30 2014