A174842 Irregular triangle T(i,n) giving the number of elements of Zp having multiplicative order di, the i-th divisor of p-1, where p is the n-th prime.
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 2, 6, 6, 1, 1, 10, 10, 1, 1, 2, 6, 6, 12, 1, 1, 2, 4, 2, 4, 8, 8, 1, 1, 2, 2, 2, 6, 4, 6, 12, 1, 1, 2, 4, 4, 4, 8, 16, 1, 1, 2, 2, 6, 6, 12, 12, 1, 1, 22, 22, 1, 1, 2, 12, 12, 24, 1, 1, 28, 28, 1, 1, 2, 2, 4, 2, 4, 4, 8, 8
Offset: 1
Examples
For prime p=17, the 7th prime, the multiplicative order of the numbers 1 to p-1 is 1, 8, 16, 4, 16, 16, 16, 8, 8, 16, 16, 16, 4, 16, 8, 2. There is one 1, one 2, two 4's, four 8's, and eight 16's. Hence row 7 is 1, 1, 2, 4, 8.
Links
- T. D. Noe, Rows n=1..500 of triangle, flattened
- Eric W. Weisstein, MathWorld: Modulo Multiplication Group
Programs
-
Mathematica
Flatten[Table[EulerPhi[Divisors[p-1]], {p, Prime[Range[100]]}]]
Formula
T(i,n) = phi(di), where di is the i-th divisor of prime(n)-1.
Comments