A174847 Number m of ways of representing 2n+1 as a sum of three primes such that all 3m primes are distinct.
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 6, 7, 8, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 9, 8, 8, 9, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 8, 9, 9, 9, 9, 10
Offset: 0
Keywords
Examples
First number with m=1 is 15=3+5+7; for m=2,3,4 we have: m=2: 29=3+7+19=5+11+13; m=3: 49=3+5+41=5+7+37=13+17+19; m=4: 71=3+7+61=5+13+53=7+11+53=13+17+41.
Crossrefs
Cf. A102605.
Comments