A174924 Semiprimes sp(k) = q * r such that sum of digits of sp(k) equals sum of digits of the semiprime index k.
14, 15, 55, 121, 122, 123, 214, 215, 265, 287, 407, 481, 482, 535, 667, 813, 851, 901, 951, 1119, 1149, 1174, 1537, 1538, 1639, 1681, 1961, 2059, 2117, 2165, 2209, 2245, 2246, 2386, 2419, 2458, 2501, 2513, 2537, 2603, 2629, 2641, 2642, 2643, 2807, 2845
Offset: 1
Examples
sp(5) = 14 = 2 * 7 is the 5th semiprime, sum of digits sod(14) = 1+4 = 5, 1st term sp(6) = 15 = 3 * 5 is the 6th semiprime, sum of digits sod(15) = 1+5 = 6. 2nd term sp(40) = 121 = 11^2 is the 40th semiprime, sum of digits sod(121) = 1+2+1 = 4, 4th term Additionally for the prime based (q=r=11) square 121: sod(q) + sod(r) = 2 * sod(11) = 4 The first 110 such semiprimes: 14, 15, 55, 121, 122, 123, 214, 215, 265, 287, 407, 481, 482, 535, 667, 813, 851, 901, 951, 1119, 1149, 1174, 1537, 1538, 1639, 1681, 1961, 2059, 2117, 2165, 2209, 2245, 2246, 2386, 2419, 2458, 2501, 2513, 2537, 2603, 2629, 2641, 2642, 2643, 2807, 2845, 2846, 2858, 2859, 2921, 3158, 3205, 3218, 3427, 3439, 4322, 4333, 4367, 4661, 4713, 4714, 4735, 4811, 5221, 5317, 5318, 5615, 5707, 5753, 6009, 6022, 6023, 6046, 6081, 6082, 6117, 6193, 6283, 6371, 6411, 6423, 6514, 6515, 6527, 6541, 6542, 6593, 6635, 6649, 6683, 6694, 6905, 7251, 7291, 7363, 7387, 8023, 8102, 8153, 8203, 8401, 8402, 8403, 8503, 8531, 9019, 9201, 9223, 9271, 9902
Comments