A174952 Triangle t(n,m)= binomial(n+m-1,n-1) + binomial(2*n-m-1,n-1) -binomial(2*n-1,n-1) read by rows, 0<=m<=n.
1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -11, -15, -11, 1, 1, -51, -76, -76, -51, 1, 1, -204, -315, -350, -315, -204, 1, 1, -785, -1226, -1422, -1422, -1226, -785, 1, 1, -2995, -4683, -5523, -5775, -5523, -4683, -2995, 1, 1, -11431, -17830, -21142, -22528, -22528
Offset: 0
Examples
1; 1, 1; 1, 1, 1; 1, -1, -1, 1; 1, -11, -15, -11, 1; 1, -51, -76, -76, -51, 1; 1 -204, -315, -350, -315, -204, 1; 1, -785, -1226, -1422, -1422, -1226, -785, 1; 1, -2995, -4683, -5523, -5775, -5523, -4683, -2995, 1; 1, -11431, -17830, -21142, -22528, -22528, -21142, -17830, -11431, 1; 1, -43748, -68013, -80718, -86658, -88374, -86658, -80718, -68013, -43748, 1;
Programs
-
Maple
A174952 := proc(n,m) binomial(n+m-1,n-1)+binomial(2*n-m-1,n-1) -binomial(2*n-1,n-1); end proc: # R. J. Mathar, Jan 15 2013
Formula
t(n,m) = t(n,n-m).
Extensions
Definition corrected and deobfuscated. R. J. Mathar, Jan 15 2013
Comments