A174961 Number of non-unitary divisors of the n-th nonsquarefree number.
1, 2, 1, 2, 3, 2, 2, 4, 1, 2, 2, 4, 5, 4, 2, 2, 6, 1, 2, 2, 4, 4, 4, 2, 5, 2, 8, 2, 2, 6, 3, 4, 4, 4, 2, 8, 2, 2, 5, 4, 8, 6, 2, 2, 8, 1, 2, 2, 4, 6, 4, 4, 4, 4, 11, 2, 2, 4, 4, 2, 4, 8, 6, 2, 8, 1, 2, 2, 2, 6, 10, 4, 2, 4, 10, 5, 4, 8, 4, 2, 6, 2, 12, 4, 8, 5, 4, 4, 4, 2, 12, 2, 4, 2
Offset: 1
Keywords
Examples
For n = 4, the fourth nonsquarefree number is A013929(4) = 12 which has 2 non-unitary divisors, 2 and 6. Therefore a(4) = 2. The number of nonsquarefree divisors of 12 is also = 2 (4 and 12). For n = 55, A013929(55) = 144 so by the third formula above a(55) = A000005(144) - A000005(6) = 15 - 4 = 11 = number of nonsquarefree divisors of 144 (4,8,9,12,16,18,24,36,48,72,144). - _David James Sycamore_, Jan 07 2025
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
Programs
-
Mathematica
Select[Table[DivisorSigma[0, n] - 2^(PrimeNu[n]), {n, 1, 500}], # > 0 &] (* G. C. Greubel, May 21 2017 *)
-
PARI
lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(numdiv(f) - 2^omega(f), ", ")));} \\ Amiram Eldar, Dec 09 2023
-
Python
from math import prod, isqrt from sympy import mobius, factorint def A174961(n): def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return -(1<
Chai Wah Wu, Aug 12 2024
Formula
From Amiram Eldar, Dec 09 2023: (Start)
Sum_{k=1..n} a(k) ~ (n/zeta(2)) * (log(n) + 2*gamma - 1 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
Extensions
Edited by Amiram Eldar, Dec 09 2023
Comments