cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174965 Length of the n-th run of consecutive terms in A000961.

Original entry on oeis.org

5, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Pahikkala Jussi, Apr 02 2010

Keywords

Comments

Let b(n) be partial sums of this sequence, as b(0) = 0, b(n) = b(n-1) + a(n). Then 2's in this sequence occur at certain positions k so that A000961(b(k))-1 = one of the terms of A006549. E.g., a(6625) = 2, and b(6625) = 6637, with A000961(6637) = 65537, the end of 2-run (65536,65537) in A000961. (The start of that 2-run, 65536, is listed as A006549(12), and 12 = 6637-6625.) - Antti Karttunen, Jul 24 2017
Position of 2s: {5, 11, 36, 62, 1068, 6625, 12358, 43566, ...},
position of 3: {2}, position of 5: {1}. All other positions pertain to 1 for A000961(n) <= 10^8. - Michael De Vlieger, Jul 25 2017

Examples

			n a(n) run in A000961
1:  5 (1 2 3 4 5)
2:  3 (7 8 9)
3:  1 (11)
4:  1 (13)
5:  2 (16 17)
6:  1 (19)
7:  1 (23)
8:  1 (25)
9:  1 (27)
10: 1 (29)
11: 2 (31 32)
12: 1 (37)
13: 1 (41)
14: 1 (43)
15: 1 (47)
16: 1 (49)
17: 1 (53)
18: 1 (59)
19: 1 (61)
20: 1 (64)
21: 1 (67)
22: 1 (71)
23: 1 (73)
24: 1 (79)
25: 1 (81)
26: 1 (83)
27: 1 (89)
28: 1 (97)
29: 1 (101)
30: 1 (103)
31: 1 (107)
32: 1 (109)
33: 1 (113)
34: 1 (121)
35: 1 (125)
36: 2 (127 128)
37: 1 (131)
38: 1 (137)
etc.
		

Crossrefs

Programs

  • Mathematica
    With[{n = 500}, Function[s, Function[t, Length /@ DeleteCases[Split@ ReplacePart[t, Map[# -> 1 &, s]], k_ /; First@ k == 0]]@ ConstantArray[0, Max@ s]]@ Sort@ Flatten[{{1}}~Join~Array[Function[p, Map[p^# &, Range@ Floor@ Log[p, n]] ][Prime@ #] &, PrimePi@ n]]] (* Michael De Vlieger, Jul 25 2017 *)

Extensions

Terms a(33) & a(36) corrected, more terms added by Antti Karttunen, Jul 24 2017