cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175198 a(n) is the smallest integer k such that the polynomial x^k + 1 over the integers mod 2 has exactly n distinct irreducible factors.

Original entry on oeis.org

1, 3, 7, 27, 15, 21, 31, 45, 73, 91, 129, 85, 63, 93, 105, 275, 257, 219, 127, 189, 217, 453, 441, 357, 601, 741, 273, 837, 1191, 981, 513, 645, 903, 949, 255, 315, 1649, 341, 1103, 1235, 455, 651, 657, 1443, 775, 2795, 825, 1925, 1911, 771
Offset: 1

Views

Author

Michel Lagneau, Mar 02 2010

Keywords

Comments

Example: the polynomial x^1649 + 1 over GF(2) is the product of 37 irreducible factors.
Records: 1, 3, 7, 27, 31, 45, 73, 91, 129, 275, 453, 601, 741, 837, 1191, 1649, 2795, 3045, 3913, 3955, 10719, 18875, 48631, 73143, 76373, 126191, 189061, 210105, 216481, 249891, 303021, 896041, 961185, 1063997, 1759603, 2555521, 3492783, 3923381, 5276409, 5529727, 6663515, 7234645, 8761553, 10488401, 11636993, 12290949, 20936365, 25099273, 25821285, 28081875, 28623469, 32848947, 48539883, 58885551, ..., . - Robert G. Wilson v, Feb 07 2018

Examples

			For n=1, x+1 is irreducible hence a(1) = 1.
For n=2, x^3 + 1 = (x+1)(x^2+x+1) mod 2 hence a(2) = 3.
For n=3, x^7 + 1 = (x+1)(x^3 + x^2 + 1)(x^3 + x + 1) mod 2 hence a(3) = 7.
For n=4, x^27 + 1 = (x+1)(x^2 + x + 1)(x^18 + x^9 + 1)(x^6 + x^3 + 1) mod 2 hence a(4) = 27.
For n=5, x^15 + 1 = (x+1)(x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)(x^4 + x^3 + 1)(x^4 + x + 1) mod 2 hence a(5) = 15.
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, p. 65.

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(0..50000000):U=array(0..50000000 ):nn:=3000: for k from 1 to nn do:liste:=Factors(x^k+ 1) mod 2;t1 := liste[2]:t2:=(liste[2][i], i=1..nops(t1)):a :=nops(t1):T[k]:=a:U[k]:=k:od:mini:=T[1]:ii:=1: print(mini):for p from 1 to nn-1 do:for n from 1 to nn-1 do:if T[n] < mini then mini:= T[n]:ii:=n: indice:=U[n]: else fi:od:print(indice):print(mini):T[ii]:= 99999999: ii:=1:mini:=T[1] :od:
  • Mathematica
    With[{s = Array[Length@ FactorList[#, Modulus -> 2] &[x^# + 1] &, 500]}, Array[FirstPosition[s, #][[1]] &, 1 + LengthWhile[Differences@ #, # == 1 &], 2] &@ Union@ s] (* Michael De Vlieger, Feb 05 2018 *)
    CountFactors[p_, n_] := CountFactors[p, n] = Module[{sum = 0, m = n, d, f, i}, While[ Mod[m, p] == 0, m /= p]; d = Divisors[m]; Do[f = d[[i]]; sum += EulerPhi[f]/MultiplicativeOrder[p, f], {i, Length[d]}]; sum](*after Shel Kaphan from A000374*); f[n_] := Block[{k = 1}, While[CountFactors[2, k] != n, k++]; k]; Array[f, 60] (* Robert G. Wilson v, Feb 07 2018 *)
  • PARI
    first(n)=my(v=vector(n),left=n,k,t); while(left, t=#factor(Mod('x^k+++1,2))~; if(t<=n && v[t]==0, v[t]=k; left--)); v \\ Charles R Greathouse IV, Jan 28 2018

Formula

A000005(a(n)) <= n <= a(n). - Robert Israel, Feb 07 2018

Extensions

Name corrected by Charles R Greathouse IV, Jan 28 2018