A175202 a(n) is the smallest k such that the n consecutive values L(k), L(k+1), ..., L(k+n-1) = -1, where L(m) is the Liouville function A008836(m).
2, 2, 11, 17, 27, 27, 170, 279, 428, 5879, 5879, 13871, 13871, 13871, 41233, 171707, 1004646, 1004646, 1633357, 5460156, 11902755, 21627159, 21627159, 38821328, 41983357, 179376463, 179376463, 179376463, 179376463, 179376463, 179376463, 179376463
Offset: 1
Keywords
Examples
a(1) = 2 and L(2) = -1; a(2) = 2 and L(2) = L(3)= -1; a(3) = 11 and L(11) = L(12) = L(13) = -1; a(4) = 17 and L(17) = L(18) = L(19) = L(20) = -1.
References
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
- H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
Links
- Donovan Johnson and Giovanni Resta, Table of n, a(n) for n = 1..43 (terms < 10^13, first 38 terms from Donovan Johnson)
- Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function. Math. Comp. 77 (2008), 1681-1694.
- R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
Programs
-
Maple
with(numtheory):for k from 0 to 30 do : indic:=0:for n from 1 to 1000000000 while (indic=0)do :s:=0:for i from 0 to k do :if (-1)^bigomega(n+i)= -1 then s:=s+1: else fi:od:if s=k+1 and indic=0 then print(n):indic:=1:else fi:od:od:
-
Mathematica
Table[k=1;While[Sum[LiouvilleLambda[k+i],{i,0,n-1}]!=-n,k++];k,{n,1,30}]
Extensions
a(15) and a(21) corrected by Donovan Johnson, Apr 01 2013
Comments