Original entry on oeis.org
4, 25, 169, 289, 361, 529, 961, 2809, 5041, 7921, 12769, 16129, 24649, 26569, 27889, 32761, 38809, 52441, 120409, 139129, 160801, 167281, 175561, 201601, 237169, 253009, 259081, 273529, 292681, 316969, 326041, 332929, 358801, 418609, 564001
Offset: 1
A362225
Primes of the form (2*p^2 + 1)/3 where p is a prime > 3.
Original entry on oeis.org
17, 113, 193, 241, 353, 641, 1873, 3361, 5281, 8513, 10753, 16433, 17713, 18593, 21841, 25873, 34961, 80273, 92753, 107201, 111521, 117041, 134401, 158113, 168673, 172721, 182353, 195121, 211313, 217361, 221953, 239201, 279073, 376001, 394241
Offset: 1
17 is a term since for p=5, (2*p^2 + 1)/3 = (2*5^2 + 1)/3 = 17 and 17 is prime.
-
Select[(2*Prime[Range[3, 140]]^2 + 1)/3, PrimeQ] (* Amiram Eldar, May 18 2023 *)
-
forprime(p=5, 1000, my(Ap=floor((2*p^2+1)/3)); if(isprime(Ap), print1(Ap,", ")))
Showing 1-2 of 2 results.
Comments