cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306826 a(0) = 1; a(n) is the smallest integer k > a(n-1) such that 2^(k-1) == 1 (mod a(n-1)*k).

Original entry on oeis.org

1, 3, 5, 13, 37, 73, 109, 181, 541, 1621, 4861, 9721, 10531, 17551, 29251, 87751, 526501, 3159001, 5528251, 11056501, 44226001, 49385701, 98771401, 172849951, 345699901, 352755001, 564408001, 634959001, 793698751, 793886887, 4763321317, 4822127753
Offset: 0

Views

Author

Thomas Ordowski, Mar 12 2019

Keywords

Comments

For n > 0, a(n) is prime or pseudoprime (a Fermat pseudoprime to base 2).
It seems that for any odd initial term a(0), this recursion gives at most finitely many composite terms (which were not found in this sequence).
Conjecture: a(n) is prime for every n > 0, namely a(n) is the smallest odd prime p > a(n-1) such that 2^(p-1) == 1 (mod a(n-1)), with a(0) = 1.

Crossrefs

Programs

  • Mathematica
    A = {1}; While[Length[A] < 500, a = Last[A]; r = MultiplicativeOrder[2, a]; k = a + r; While[PowerMod[2, k - 1, k a] != 1, k = k + r];  AppendTo[A, k]]; Take[A, 75] (* Emmanuel Vantieghem, Apr 02 2019 *)

Extensions

More terms from Amiram Eldar, Mar 12 2019
Showing 1-1 of 1 results.