cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175295 Decimal expansion of the integral of cos(Pi*x)*log(x)/x^2 from x=1 to infinity.

Original entry on oeis.org

0, 2, 9, 9, 1, 3, 2, 0, 3, 9, 8, 3, 9, 3, 4, 9, 7, 8, 4, 3, 9, 3, 0, 1, 7, 9, 2, 2, 3, 5, 6, 2, 4, 5, 9, 0, 7, 6, 3, 8, 7, 8, 1, 8, 9, 4, 7, 7, 2, 1, 4, 3, 6, 8, 4, 2, 9, 2, 3, 2, 9, 4, 8, 8, 0, 6, 1, 3, 3, 0, 8, 5, 2, 3, 5, 1, 8, 3, 7, 6, 5, 3, 1, 7, 8, 7, 7, 5, 7, 8, 8, 2, 2, 6, 7, 1, 7, 8, 1, 1, 5, 4, 6, 8, 7
Offset: 0

Views

Author

R. J. Mathar, Mar 24 2010

Keywords

Examples

			0.02991320398393497843930179...
		

Programs

  • Maple
    evalf(1+Pi^2/2*( gamma+log(Pi)-1 ) -Pi^2*hypergeom([1/2,1/2,1], [3/2,3/2,3/2,2],-Pi^2/4)/2 ) ;
  • Mathematica
    Join[{0}, RealDigits[ N[1/2*(Pi^2*(-2*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2, 3/2}, -Pi^2/4] + Log[Pi] + EulerGamma - 1) + 2*Pi*SinIntegral[Pi] - 2), 105]][[1]]] (* Jean-François Alcover, Nov 08 2012 *)
    Join[{0},RealDigits[NIntegrate[Cos[Pi*x] Log[x]/x^2,{x,1,\[Infinity]}, WorkingPrecision->1000],10,120][[1]]] (* Harvey P. Dale, Nov 01 2017 *)

Formula

1+ A102753*( A053510 -1 + A001620 - 3F4(1/2,1/2,1; 3/2,3/2,3/2,2 ; -A091476) ) .