A175312 Maximum value on Lower Shuffle Part of Kimberling's Expulsion Array (A035486).
1, 3, 5, 7, 10, 12, 15, 17, 20, 22, 25, 28, 31, 33, 36, 39, 42, 44, 47, 50, 53, 55, 58, 61, 64, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 96, 99, 101, 104, 107, 110, 113, 116, 119, 122, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 171
Offset: 1
Keywords
References
- D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998
- R. K. Guy, Unsolved Problems Number Theory, Sect E35.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n=1..20000
- Clark Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991; Solution to Problem 1615, Crux Mathematicorum, Vol. 18, March 1992, p. 82-83.
- Eric Weisstein's World of Mathematics, Kimberling Sequence.
Programs
-
Mathematica
(* By direct computation *) K[i_, j_] := i + j - 1 /; (j >= 2 i - 3); K[i_, j_] := K[i - 1, i - (j + 2)/2] /; (EvenQ[j] && (j < 2 i - 3)); K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3)); K[i_] := K[i] = K[i, i]; SetAttributes[K, Listable]; A175312[n_] := Max[Table[K[n, i], {i, 1, n}]] (* Enrique Pérez Herrero, Mar 30 2010 *) (* By the Formula *) \[Lambda][n_] := Floor[Log[2, (n + 2)/3]]; A175312[n_] := 1 + 3*(n - \[Lambda][n]) - Floor[(n + 2)/(2^\[Lambda][n])] (* Enrique Pérez Herrero, Mar 30 2010 *)
-
PARI
lambda(n)= floor(log((n + 2)/3)/log(2)); A175312(n)= 1 + 3*(n - lambda(n)) - floor((n + 2)/(2^lambda(n))); \\ Enrique Pérez Herrero, Mar 30 2010
Formula
a(n) = 1 + 3(n-lambda(n)) - floor((n+2)/2^lambda(n)), lambda(n) = floor(log_2((n+2)/3)).
a(n) >= A007063(n); a(n) = max(K(n,1),K(n,2),...,K(n,n)), where K(i,j) is an element of Kimberling's Array given by A035486.
From Enrique Pérez Herrero, Mar 30 2010: (Start)
a(theta(k)) = A007063(theta(k)), where theta(k) = Sum_{i=0..k-1} 2^floor(i/3).
At these values the maximum in the Lower Shuffle is the diagonal expelled element. (End)
Comments