cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175312 Maximum value on Lower Shuffle Part of Kimberling's Expulsion Array (A035486).

Original entry on oeis.org

1, 3, 5, 7, 10, 12, 15, 17, 20, 22, 25, 28, 31, 33, 36, 39, 42, 44, 47, 50, 53, 55, 58, 61, 64, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 96, 99, 101, 104, 107, 110, 113, 116, 119, 122, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 171
Offset: 1

Views

Author

Enrique Pérez Herrero, Mar 28 2010

Keywords

Comments

a(n) is the maximum value on or below diagonal of Kimberling's Expulsion Array; this part could be called the Lower Shuffle.

References

  • D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998
  • R. K. Guy, Unsolved Problems Number Theory, Sect E35.

Crossrefs

Programs

  • Mathematica
    (* By direct computation *)
    K[i_, j_] := i + j - 1 /; (j >= 2 i - 3);
    K[i_, j_] := K[i - 1, i - (j + 2)/2] /; (EvenQ[j] && (j < 2 i - 3));
    K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3));
    K[i_] := K[i] = K[i, i]; SetAttributes[K, Listable];
    A175312[n_] := Max[Table[K[n, i], {i, 1, n}]]  (* Enrique Pérez Herrero, Mar 30 2010 *)
    (* By the Formula *)
    \[Lambda][n_] := Floor[Log[2, (n + 2)/3]];
    A175312[n_] := 1 + 3*(n - \[Lambda][n]) - Floor[(n + 2)/(2^\[Lambda][n])] (* Enrique Pérez Herrero, Mar 30 2010 *)
  • PARI
    lambda(n)= floor(log((n + 2)/3)/log(2));
    A175312(n)= 1 + 3*(n - lambda(n)) - floor((n + 2)/(2^lambda(n))); \\ Enrique Pérez Herrero, Mar 30 2010

Formula

a(n) = 1 + 3(n-lambda(n)) - floor((n+2)/2^lambda(n)), lambda(n) = floor(log_2((n+2)/3)).
a(n) >= A007063(n); a(n) = max(K(n,1),K(n,2),...,K(n,n)), where K(i,j) is an element of Kimberling's Array given by A035486.
From Enrique Pérez Herrero, Mar 30 2010: (Start)
a(theta(k)) = A007063(theta(k)), where theta(k) = Sum_{i=0..k-1} 2^floor(i/3).
At these values the maximum in the Lower Shuffle is the diagonal expelled element. (End)