cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175332 Numbers whose binary expansion is of the form 11+0*.

Original entry on oeis.org

3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 56, 60, 62, 63, 96, 112, 120, 124, 126, 127, 192, 224, 240, 248, 252, 254, 255, 384, 448, 480, 496, 504, 508, 510, 511, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044
Offset: 1

Views

Author

Joerg Arndt, Apr 12 2010

Keywords

Comments

Also numbers n such that the set (2^j)%n consists only of the powers of two.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a175332 n = a175332_list !! (n-1)
    a175332_list = f $ singleton 3 where
      f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
            where z = 2*x; (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 24 2014
    
  • PARI
    is_11p0s(n)=
    { /* Return whether binary expansion has form 11+0* */
      local(b);
      if ( n<3, return(0) );
      b = binary( n/(2^valuation(n,2) ) );
      if ( #b<2, return(0) );
      for (j=1,#b, if(b[j]==0, return(0) ) );
      return(1);
    }
    for (n=1,2100, if (is_11p0s(n), print1(n,", ") ) ); /* show terms */
    
  • Python
    def a_next(a_n): t = a_n + (a_n & 1); return t | (t >> 1)
    a_n = 3; a = []
    for i in range(53): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 21 2022

Formula

Sum_{n>=1} 1/a(n) = -2 + A211705. - Amiram Eldar, Feb 26 2022