A175342 Number of arithmetic progressions (where the difference between adjacent terms is either positive, 0, or negative) of positive integers that sum to n.
1, 2, 4, 5, 6, 10, 8, 10, 15, 14, 12, 22, 14, 18, 28, 21, 18, 34, 20, 28, 38, 28, 24, 46, 31, 32, 48, 38, 30, 62, 32, 40, 58, 42, 46, 73, 38, 46, 68, 58, 42, 84, 44, 56, 90, 56, 48, 94, 55, 70, 90, 66, 54, 106, 70, 74, 100, 70, 60, 130, 62, 74, 118, 81, 82, 130, 68, 84, 120
Offset: 1
Keywords
Examples
From _Gus Wiseman_, May 15 2019: (Start) The a(1) = 1 through a(8) = 10 compositions with equal differences: (1) (2) (3) (4) (5) (6) (7) (8) (11) (12) (13) (14) (15) (16) (17) (21) (22) (23) (24) (25) (26) (111) (31) (32) (33) (34) (35) (1111) (41) (42) (43) (44) (11111) (51) (52) (53) (123) (61) (62) (222) (1111111) (71) (321) (2222) (111111) (11111111) (End)
Links
- Lars Blomberg, Table of n, a(n) for n = 1..10000
- Lars Blomberg, C# program for calculating b-file.
- Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
- Graeme McRae, Counting arithmetic sequences whose sum is n.
- Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
- Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
- Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
- A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
- Wikipedia, Arithmetic progression.
- Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,15}] (* returns a(0) = 1, Gus Wiseman, May 15 2019*)
Formula
Extensions
Edited and extended by Max Alekseyev, May 03 2010