A175353 Antidiagonal expansion of (x + x^(m + 1))/(1 - 2*x - x^(m + 1)).
2, 6, 1, 18, 3, 1, 54, 7, 2, 1, 162, 17, 5, 2, 1, 486, 41, 11, 4, 2, 1, 1458, 99, 24, 9, 4, 2, 1, 4374, 239, 53, 19, 8, 4, 2, 1, 13122, 577, 117, 40, 17, 8, 4, 2, 1
Offset: 0
Examples
{2}, {6, 1}, {18, 3, 1}, {54, 7, 2, 1}, {162, 17, 5, 2, 1}, {486, 41, 11, 4, 2, 1}, {1458, 99, 24, 9, 4, 2, 1}, {4374, 239, 53, 19, 8, 4, 2, 1}, {13122, 577, 117, 40, 17, 8, 4, 2, 1}
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 125 and 155.
Crossrefs
Cf. A175331.
Programs
-
Mathematica
f[x_, n_] = (x + x^(m + 1))/(1 - 2*x - x^(m + 1)); a = Table[Table[SeriesCoefficient[ Series[f[x, m], {x, 0, 10}], n], {n, 0, 10}], {m, 0, 10}]; Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}]; Flatten[%]
Formula
G.f.: f(x,m) = (x + x^(m + 1))/(1 - 2*x - x^(m + 1)).
Comments